Module Programmer’s Guide to
Local Map Builder for ALVan

Anthony Stentz
Steve Shafer

28 June 1986

CMU Computer Science Department

This work is funded by the US Army Engineer Topographic
Laboratories, under contract number DACA76-85-C-0003

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
28 JUN 1986 2. REPORT TYPE 00-00-1986 to 00-00-1986
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Module Programmer’s Guideto Local Map Builder for ALVan £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Carnegie Mellon University ,Computer Science REPORT NUMBER
Department,Pittsburgh,PA,15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Sa_me as 99
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Table of Contents

1. Introduction

1.1 Conceptual Design
1.2 The Blackboard Software Package

2. The User Interface

2.1 Blackboard Tokens
2.1.1 Token Structure and Declarations
2.1.2 Operations on Tokens
2.2 Locations and Coordinate Frames
2.2.1 Location Data Type
2.2.2 Coordinate Frames and Families
2.2.3 Operations on Locations
2.3 Pattern-Matching Specifications
2.3.1 Building Specifications
2.3.2 Managing Specification Lists
2.4 Communicating with the BB
2.4.1 Establishing Connections to the BB
2.4.2 Depositing New Tokens in BB
2.4.3 Recovering Tokens from the Blackboard Using Specs
2.4.4 Sending and Receiving Tokens by ID
2.5 Implementation Strategies
2.5.1 Module Structure
2.5.2 The Algorithm

3. The Blackboard Manager

3.1 BB Manager Structure

3.2 Overview of Algorithms
3.2.1 Initialization Messages
3.2.2 Specification Messages
3.2.3 New Token Messages
3.2.4 Direct Addressing Messages

4. Reference Manual

4.1 System Data Structures
4.1.1 Tokens
4.1.2 Locations and Substructures
4.2 Token Declarations and Operations
4.2.1 Token Template File Description
4.2.2 Token and Attribute Functions
4,2.3 UDT functions
4.2.4 Pose Functions
4.2.5 Frame Family Functions
4.2.6 Frame Functions
4.2.7 Location Functions
4.2.8 Array Functions
4.3 Specifications and Specification Lists
4.3.1 Specification Functions
4.3.2 Constant and Attribute Spec Node Functions
4.3.3 Boolean Spec Node Functions

©CONOO O h o =

32

TREBSERBELIRRE

4.3.4 Relational Spec Node Functions
4.3.5 Arithmetic Spec Node Functions
4.3.6 String Spec Node Functions
4.3.7 Location Spec Node Functions
4.3.8 Array Spec Node Functions
4.3.9 Slot Functions
4.,3.10 User-defined Functions
4.3.11 Specification List Functions
4.4 BB Functions
4.4.1 Macro for Recovering ID Numbers
4.4.2 Function for Initialization
4.4.3 Functions for Sending and Cancelling Spec Lists
4.4.4 Functions tor Getting and Putting Tokens
4.4.5 Functions for Accessing Tokens by ID Number
4.5 Position Correction Functions in the Blackboard
4.5.1 World Map Based Corrections -
4.5.2 Vehicle Based Correction
4.5.3 Dead Reckoning Command
4.5.4 Status Command
4.6 Global Time Function
5. Future Versions
1. Include File for Modules
1. Grammar for Token Template File
{1l. Include File for User-defined Functions

1IV. A Complete Example of a KS
V. Instructions for Using the Blackboard Package

V.1 Compiling Modules
V.2 Executing the System

2TBEBIFHER

(o]
-

EIN2335238322383R

Figure 1-1:
Figure 1-
Figure 1-
Figure 2-
Figure 2-
Figure 2-
Figure 2-
Figure 2-
Figure 2-6:

Figure 2-7:

Figure 2-8:

Figure 2-9:

Figure 2-10:
Figure 2-11:
Figure 2-12:
Figure 2-13:
Figure 2-14:

Figure 2-15:
Figure 2-16:

Figure 2-17:
Figure 2-18:

5:

hovwb2

List of Figures

The four levels of the CMU system architecture.

The Local Map Level

Blackboard software configuration

Example of a token template file

Example of token operations

Making point sets

Declaring a local frame

Declaring a global frame

Declaring a local frame family

Declaring and modifying a global frame family

Declaring frames from frame families

Creating and converting a location
A program segment that constructs two specifications
Example of a token matching a spec
Example of building a spec with a slot
Program segment that uses spec lists
Program segment that uses the macro facility for recovering ids. The
segment is continued in figure 2-15
Program segment that illustrates the macro facility continued from figure
2-14
Send a new token to the BB
Program segment that sends spec lists and receives tokens
Module interface block diagram

Figure 3-1: BB Manager Structure

—
O WoOMULMHrwiN

1
11
12
13
14
14
16
17
18
19

21

22

24
25

1. Introduction

1.1 Conceptual Design

This document describes the local map blackboard component of a mobile robot system, the
Autonomous Land Vehicle (ALV), under construction at CMU. This system will utilize diverse sensors
including cameras, sonar, and range finders to navigate autonomously on roads; it is composed of
several processes performing these tasks and communicating via a Local Map Builder process, which

is the subject of this document.

The system architecture consists of four main levels of abstraction: a "virtual vehicle" robot

interface, sensor processing, a local map, and high-level cognition as illustrated in figure 1-1:

e Virtual vehicle: The lowest level includes the vehicle, control programs, and interface
routines to sensor modules. The virtual vehicle handles the details of getting the vehicle
to move, point its sensors, ship back data, and perform some data correction such as
correction for vehicle motion during sensing. Higher-level modules will be able to
command a velocity and trajectory, and have the vehicle move and the sensor data
appear with no further effort on their part.

e Sensor processing: Sensor processing turns signals into symbols. It takes raw data and
produces 3-D coordinate symbols. The output of this level is sensor-dependent and has
no semantic interpretation. For example, vision modules take images and produce 3-D
lines and surfaces. Sonar modules take raw sonar data and produce 3-D blobs. Range
modules take raw range data and produce 3-D discontinuities, flat regions, and rough
regions.

e Local map: This is the level at which sensor fusion occurs. Sensor modules generate
unlabeled and sensor-dependent data objects for storage in the local map. Knowledge -
Sources (KS) work with this data to combine it with data from other sensors and from
predictions to produce symbolically labeled data. The local map level is the subject of
this document.

e Cognition: This level handles path planning, mission assessment, safety, goal seeking,
etc. It includes geometric information, such as global maps, and symbolic information,
such as labeled objects. The details of particular sensors are masked.

This document deals with the local map level, which is responsible for maintaining a description of
the environment around the vehicle. It receives data from the sensor interpretation processes, which
is in map coordinates but has no semantic labels. The data is passed to KS processes and is
eventually used by cognition and control processes. The components of the local map level are the
local map builder, that orchestrates the processing, a set of knowledge sources that do the work, and

a blackboard that stores the data (see figure 1-2):

issi Navigation
Mission g Cognition
Goals
Local Model Builder
Local Map
Sensor
Vision Sonar Range Infopmat-ion
Processing
N
Virtual
Vehicle

Figure 1-1: The four levels of the CMU system architecture.

e Local map builder (LMB:) This component controls the local map. The LMB is
responsible for taking requests from navigation and goal- seeking modules, listening to
data from the sensor interpretation, and then selecting knowledge sources to run. This
gives the LMB a dual role, as both an interface and data channel, and as a scheduler for
the knowledge sources. '

e Knowledge Sources (KS:) This component consists of expert or specialized modules that
retrieve partial descriptions from the local map, generate higher-level descriptions, and
write back into the local map. Possible KS modules include a road finder, an obstacle
finder, a vehicle position predictor, and a landmark identifier.

e Blackboard: This component is a data structure into which the LMB stores sensor data
interpretations and hypotheses about objects in the local map. Conceptually, it is split
into three levels: sensor-dependent data, information that is highly dependent on the
sensor that generated it; partial descriptions, such as parts of roads or hypotheses about
obstacle location; and fully-labeled objects, such as roads, houses, or traffic signs.

This document describes the LMB, the Blackboard, and the interface to the LMB used by KS, sensor,
and cognition modules. It provides detailed specifications for programmers implementing these types

of modules

Cognition
Knowledge

Sources

Road
Edge
Finder

Local
Map Blackboard
Builder

Obstacle
Finder

Vehicle
Position

000

Sensor Processing

Figure 1-2: The Local Map Level

1.2 The Blackboard Software Package

The blackboard software package consists of software for implementing all three components of the
local map level, including conventions and facilities for communication between the three

components as well as processes in the cognition, sensor processing and virtual vehicle levels.

Blackboard and LMB

The blackboard is a database of tokens, data objects consisting of a set of attribute-value pairs
determined by the token’s type. The LMB manages the blackboard, servicing requests from KS,
sensor, and cognition modules to store and retrieve tokens from the blackboard. The LMB is
equipped with a pattern-matching mechanism, uséd by KS and other processes for recovering
tokens. Additional tasks performed by the LMB include scheduling token requests, expiring old and
uninteresting tokens, and transforming spatial data from one coordinate frame to another. The LMB
is implemented as an independent module, separately compiled, running és a stand-alone process,
complete with network and inter-process communication channels and primitives for communicating
with other processes. The blackboard is implemented as a collection of data structures residing in
the address space of the LMB.

Interface to LMB

The btackboard software package includes a user interface to the LMB that consists of a library of
functions and data structurés to be compiled with user-written modules, enabling them to store and
retrieve tokens from the blackboard. The package includes mechanisms for defining, allocating, and
deleting tokens and for reading and writing their attributes. Mechanisms are also provided for storing
these tokens in the blackboard database, constructing patterns (specifications) for matching tokens,
and retrieving tokens from the blackboard database using these specifications. This package
includes the network and inter-process communication channels and primitives necessary for
communication with the LMB, hiding these details from the module implementors. The sensor, KS,
and cognition modules run as separate processes, communicating to the LMB through their module

interfaces. Figure 1-3 illustrates the blackboard software configuration.

I Blackboard I
I Database I
| Local Map |
LM8 Builder T v
Interface u I Interface
Sensor (BB Manager) Cognition
Module I I Module
1 1
LMB LMB LMB LMB
Interface Interface Interface Interface
Sensor KS KS Cognition
Module Module Module Module
2 1 2 2

Figure 1-3: Blackboard software configuration

2. The User Interface

The blackboard software package provides the user with a library of C data structures and functions
necessary for writing sensor, KS, and cognition modules for use in the blackboard system. More

specifically, the package provides the following facilities:

e Token manipulation: mechanisms are provided for declaring, allocating, deleting,
reading, and writing composite data objects (tokens) residing in the user's address
space. Each token consists of a list of attribute-value pairs.

e Coordinate frame manipulation: mechanisms are provided for defining, changing,
transforming, and deleting coordinate frames in which the world, vehicle, sensors, and
physical objects are expressed.

e Specification manipulation: mechanisms are provided for building patterns used for
matching and recovering tokens residing in the blackboard database. Each pattern is a
boolean expression of functions and relations defined over data attributes. A token
matches a pattern if its attributes satisfy the boolean expression.

e Blackboard Communication: mechanisms are provided for depositing tokens into the
blackboard database and for retrieving them, either by pattern-matching specification or
direct token addressing.

The inclusion file for user-written modules, module.h, can be found in Appendix |. In this document,

"user" refers to a programmer implementing a module in the ALVan system.

2.1 Blackboard Tokens

2.1.1 Token Structure and Declarations

A token is a data unit capable of representing an object of any type (such as a road, an intersection,
an obstacle, or a landmark) or instructions or status information to be passed between modules.
Each token is composite, consisting of a set of subobjects known as attributes, or characteristics of

the token. Attributes fall into three categories:

e Internal attributes: are common to all tokens regardless of type and are used by the
system to manage the token. These attributes include a unique identification number, a
token type, a generation number, a time stamp indicating which coordinate system was
used to record the token's data, the time the token was deposited in the database, the
time the token was last modified, a pointer to the module that created the token, and the
token’s location.

e Local attributes: are specific to a single token type. The number and types of local
attributes vary from one token type to another. For example, tokens of type CAR might
have a local attribute NUMBEROFDOORS, an integer defined to be the number of car
doors. NUMBEROFDOORS has meaning only for tokens of type CAR.

e Global attributes: are common to more than one token type. For example, the global
attribute SURFACEAREA might be common to tokens of types INTERSECTION,
ROADUNIT, GRASSFIELD, etc.

Attributes have names and values. Attribute names are identifiers; the values may be of primitive,
composite, or user-defined (UDT) types. Primitive types include integers, floating point numbers,
booleans, enumerated types, and strings of characters. UDT's are streams of bytes unstructured to
the blackboard package and interpreted by the user’s modules. The two composite types are location
and array. A location is defined to be set of three-dimensional coordinates (three floating point
numbers) denoting a point, line, polygon, or "blob" and a coordinate frame giving the position and
orientation of this point set relative to the world. The location data type and supporting data
structures are described in section 2.2. An array is defined to be an ordered set of elements of any

type (including array), which are indexed by integers. See section 4.2.8 for a description of the array

type.

The set of attributes for a given token is determined by the token’s type, which is a list of all of the
attributes that define a kind of token. Token types are defined by the user and must be described in
the template file, template.init. Attribute names and types, as well as enumerated types and UDTs,
must also be defined in this file. This file is read by the BB manager at start-up to enable it to interpret
tokens sent by sensor, KS, and cognit_ion modules. See section 4.2.1 for a detailed description of

template.init.

Figure 2-1 illustrates an example 6f a template file. In this example, SURFACETYPE and
CONTROLTYPE are enumerated types. IMPORTANCETYPE is a UDT (user-defined type). Within the
token type declaration for INTERSECTION, the attributes AREA, CONTROL, IMPORTANCE, and
ROADS are local and are of types FLOAT, enumerated types CONTROLTYPE and
IMPORTANCETYPE, and ARRAY of four INTs respectively. SURFACE and TRAVERSED are global
attributes, and appear in the ROADUNIT token type declaration also. Although AREA appears in both
token type declarations, the two local attributes are logically distinct. Note that the internal attributes

are not declared in template.init, as they are automatically common to all token types.

2.1.2 Operations on Tokens

Tokens may be allocated and deleted with the functions Tnewtoken and Tfreetoken respectively.
Token attributes (global, local, and internal) may be read and written with the function classes T?read
and T?write respectively, where ? is an attribute designator, a single letter (i, f, b, s, e, u, and 1)

denoting the attribute type (integer, floating point, string, enumerated, UDT, and location). The types

/* Define enumerated types SURFACETYPE and CONTROLTYPE */
ENUM SURFACETYPE { CONCRETE , ASPHALT , GRAVEL , DIRT } ;
ENUM CONTROLTYPE { STOPSIGNS , TRAFFICLIGHT };

non

/* Define UDT IMPORTANCETYPE */
.UDT IMPORTANCETYPE;

/* Define global attributes SURFACE and TRAVERSED to be
of types SURFACETYPE and BOOL respectively */

GLOBAL SURFACE : SURFACETYPE ;

GLOBAL TRAVERSED : BOOL ;

/* Define array ROADARRAY */
ARRAY ROADARRAY [4] OF INT ;

/* Define token type INTERSECTION with global attributes
SURFACE and TRAVERSED and local attributes AREA,
CONTROL, IMPORTANCE, and ROADS */

TOKEN INTERSECTION {

SURFACE : GLOBAL

AREA : FLOAT ;

TRAVERSED : GLOBAL ;

CONTROL : CONTROLTYPE ;

IMPORTANCE : IMPORTANCETYPE ;

ROADS : ROADARRAY ;

}

/* Define token type ROADUNIT with global attributes SURFACE
and TRAVERSED and local attributes AREA, ROAD1, and ROAD2 */

TOKEN ROADUNIT {

SURFACE : GLOBAL ;

AREA : FLOAT ;
TRAVERSED : GLOBAL ;
ROAD1 : INT ;

ROAD2 : INT ;

}

4 Figure 2-1: Example of a token template file
integer and single-precision floating point are primitive types. Strings are arrays of characters.
Booleans and enumerated types are stored as integers. UDTs are structures, consisting of an integer
denoting the size of the data and a pointer to the data. The functions Unewudt, Uassignudt, and
Ufreeudt allocate, assign data to, and de-allocate UDTs respectively. The functions Anewarray,
A?read, A?write, and Afreearray allocate, read from, write to, and de-allocate arrays respectively.

Operations on location data are discussed in section 2.2.

Figure 2-2 illustrates the use of these functions. Note that the attribute 'area’ and token type
'intersection’ in this program segment are referenced by ids. All identifiers in tempiate.init including
token types, attribute names, UDT, enumerated types, and enumerated scalars are assigned unique

TOKEN *t; /* Declare pointer to token */
int intersectionid, areaid, digtime, areaval;

/* Initialize -- load the id’s (see section 2.4.1) */

/* Allocate a new token of type ’'intersection’ for an
image digitized at time ’'digtime’ */
t = Tnewtoken (intersectionid, digtime);

/* Write the ’area’ attribute */
Tfwrite (t, areaid, 5.2);

/* Read the 'area’ attribute */
areavalue = Tfread (t, areaid);

/* Free the token */
Tfreetoken (t);

Figure 2-2: Example of token operations
ids (integers) by the BB manager as the file is parsed. Identifiers naming user-defined functions are
aiso assigned ids. These ids are passed to all modules during initialization for referencing identifiers.

This procedure is discussed extensively in section 2.4.1.

2.2 Locations and Coordinate Frames

For a moving vehicle that avoids obstacles and navigates using landmarks, spatial data is very
important; therefore, all tokens have an internal attribute TLOCATION of type Jocation. A location is a
collection of three-dimensional points to describe the shape of an object expressed in some
coordinate frame. Depending on the nature of the represented object, one coordinate frame may be
more appropriate another. For example, stationary objects such as landmarks are most suitably
expressed in a geocentric, or world coordinate frame, while sensors mounted on the vehicle are best
expressed in a vehicle-based frame. The following sections describe the structure of locations along

with a powerful set of functions for manipulating them.

2.2.1 Location Data Type

A location is a set of three-dimensional points (a point set) expressed in a coordinate frame. A
location's point set describes the shape of the represented object, while the coordinate frame
specifies its position and orientation. Four types of point sets are provided for representing points,
line segments, polygons, and point scatters. A point is a single three-dimensional (x, y, z) coordinaté
denoting a single position in space; a line segment is a pair of three-dimensional endpoints possibly

denoting a road edge or traffic line; a polygon is a set of coplanar vertices possibly denoting the

10

two-dimensional perimeter of an obstacle or a section of a road; and a point scatter is an aggregate of
three-dimensional points representing arbitrary shépes ranging from amorphous "blobs" to detailed
objects. Coordinate frames are the topic of the next section.

LPOINTSET *psetl, *pset2;

/* Create a point set for a triangle */
psetl = Lnewpointset (LPOLYGON, 3);

/* Add the three vertices */
Laddpoint (pset1l, 1.0, 0.0, 0.0);
Laddpoint (psetl, 0.0, 1.0, 0.0);
Laddpoint (psetl, -1.0, 0.0, 0.0);
/* De-allocate the point set */
Lfreepointset (psetl);

/* Create a point set for a "blob" */
pset2 = Lnewpointset (LSCATTER, 6);

/* Add the six points */

Laddpoint (pset2, 3.2, 5.4, 2.1);
Laddpoint (pset2, 4.2, 2.1, 2.1);
Laddpoint (pset2, 5.5, 4.3, 7.1);
Laddpoint (pset2, 5.4, 2.0, 2.0);
Laddpoint (pset2, 3.5, 3.5, 1.0);
Laddpoint (pset2, 1.1, 1.2, 1.0);

/* De-allocate the point set */
Lfreepointset (pset2); '

Figure 2-3: Making point sets

A number of functions are provided for defining shapes or point sets as illustrated in figure 2-3. The
function Lnewpointset is used to create two shapes: a triangle and a "blob". The three vertices of
the triangle and the six points of the blob are defined using the function Laddpoint. Finally, the

shapes are de-allocated using Lfreepointset. See section 4.2.7 for details.

2.2.2 Coordinate Frames and Families

In addition to a point set for shape, each location has a coordinate frame or frames to describe the
position and orientation of the location. There are three pre-defined frames: world, vehicle, and null.
The world frame is geocentric, that is, affixed to the earth. Itis useful for representing map data such
as landmarks, roads, and intersections. The vehicle frame is egocentric, that is, affixed to the vehicle.
it is useful for defining the positions and orientations of sensors such as cameras and sonar mounted
on the vehicle. The vehicle frame is actually not a single coordinate frame, but is instead a family of

frames. As the vehicle moves about, the position and orientation of the vehicle frame relative to the

1

world frame changes. The BB manager keeps a history of the vehicle’'s motion as a function of time.
By specifying a particular time t,, the transformation from the world frame to the vehicle frame at t,
can be retrieved; thus locations expressed in the world frame can be compared to those in a vehicle
frame. The null frame is simply an indicator that the position and orientation of a particular location is

not known.

The user is not restricted to expressing all locations in world or vehicle frames; instead, the user
may define /ocal frames. A local frame is a coordinate frame defined relative to any other frame or
family of frames, called the base frame. A local frame has meaning only within the context of the
module that defined it, that is, no other module can express locations in such a frame unless they too
define it locally. Local frames are convenient for expressing data in a "natural way", that is, in the
same coordinate frame in which they were recorded. Figure 2-4 illustrates the declaration of a local
frame to represent a sonar sensor. In order to make a focal frame, a base frame and a transformation
to this base frame must be specified. Since the sonar sensor is mounted on the vehicle, the vehicle
frame family (VEHICLEFF) is appropriaie. The transformation to this frame family is given by the pose

'ppose’. The function FmakelocalfromFF creates the frame. See section 4.2.6 for details.

FRAME *frm; .
POSE ppose = { /* Pose definition */ };

/* Declare a local frame */
frm = FmakelocalfromFF (VEHICLEFF, ppose);

Figure 2-4: Declaring alocal frame

Global frames are identical to local frames with the exception that the coordinate frame is sent to
the blackboard and is available to any other module. Global frames are useful for expressing
locations that are accessed by more than one module, such as the structure of a building or other
landmarks. Like local frames, global frames defined by a transformation relative to a base frame or
family (which must not be local). Figure 2-5 illustrates the declaration of a global frame for a building.
The frame is declared relative to the world frame using the function FmakeglobalfromF. See section
4.2.6 for details.

FRAME *frm;
POSE ppose = { /* Transformation pose */ };

/* Declare the global frame family */
frm = FmakeglobalfromF (WORLDF, ppose);

Figure 2-5: Declaring a global frame -

12

Frames are useful for expressing objects such as a building or sonar sensor that remain fixed
relative to a reference frame, but for objects such as a camera on a pan/tilt mount or a moving car,
frame families are needed. Consider first the movable camera. The camera’s position and orientation
relative to the vehicle is a function of the roll, pan, and tilt angles of the camera mount. Rather than
declaring each desired configuration as an individual frame (there is a continuum), a local frame
family parameterized by the roll, pan, and tilt angles of the mount can be used. A local frame family
declaration requires a base frame and a user-defined function, that returns a transformation pose
from one of the frames in the family to the base. This transformation function "selects a member" of
the family as a function of the parameters. Figure 2-6 illustrates the declaration of a local frame family
for a movable camera. The family 'frmfam’ is local relative to the vehicle (VEHICLEFF). The transform
function ’transform’ takes '3’ arguments (roll, pan, and tilt) and returns a pose. This transform

function does not require time as a parameter. See section 4.2.5 for details.

FRAMEFAMILY *frmfam;
POSE *transform ();

/* Declare a local frame family relative to the vehicle
as a function of roll, pan, and tilt angles of the

camera mount */
frmfam = FFmakelocalfromFF (VEHICLEFF, transform, 3, LNOTIME});

/* Declare the transformation function */
transform (roll1, pan, tilt)
float roll, pan, tilt; {

/* Body of the function */

}

Figure 2-6: Declaring a local frame family

In addition to declaring frame families locally for sensors, the user may need to declare frame
families that are accessible to other modules. For example, a vision module detects é moving car and
needs to make this information évailable to an obstacle avoidance module. For such tasks, global
frame families are provided. Like local frame families, global families have a base or reference frame;
the transformation, however, differs considerably. Instead of a local function defined over a
continuum of parameter values, transformations for global families reside in a look-up table. This
table or parameter fist, contains some number of time-pose pairs. A time-pose pair is a global time
value 't and a pose 'p’ that provides the transformation from a single frame in the global family at time
't’ to the base frame. Note that global frame families have only one parameter (time) and are defined
over a finite number of values of time. Modules may recover a global frame family from the

blackboard and "update" the transformation by adding time-pose pairs.

13

Figure 2-7 illustrates the declaration and modification of a global frame family for representing a
moving car. The car is seen initially at time t = 1.0 with a transformation 'posel’ from the world
frame. A global frame family 'frmfam’ is created and is sent to the blackboard. Attimet = 2.0, the car
is seen relative to the world with a transformation 'pose2’. The global frame family is recovered from

the blackboard, and the new time-pose pair is added to the parameter list.

FRAMEFAMILY *frmfam;
FFPARAMLIST *plist;
POSE posel = { /* Transformation matrix */ };
POSE pose2 = { /* Transformation matrix */ };

/* Make a parameter list */
plist = FFmakeparamlist ();-

/* Add a time-pose pair */
FFaddtoparamlist (plist, 1.0, posel);

/* Make a global frame family using plist */
frmfam = FFmakeglobalfromF (WORLDF, plist);

/* Retrieve the frame family */
FFgetglobalupdate (frmfam, FFLOCK);

/* Retrieve the parameter 1list */
plist = FFreadparamlist (frmfam);

/* Add a time-pose pair */
FFaddtoparamlist (plist, pose2, 2.0);

/* Write the parameter Tist */
FFwriteparamlist (frmfam, plist);

/* Replace the frame family */
FFputgiobal (frmfam);

Figure 2-7: Declaring and modifying a global frame family

As previously described, local and global frames can be created by specifying a transformation and
a base frame or family. Frames can also be created by "selecting” a member of a frame family. For
example, assume that a camera frame relative to the vehicle is needed for the mount tilted at 20
degrees with no roll nor pan. Instead of creating a frame relative to the vehicle with the appropriate
transform, a frame can be selected from the camera frame family by specifying values for the roll, pan,
and tilt parameters as illustrated in figure 2-8. Now assume that a camera frame relative to the world
frame is needed. Since the vehicle is moving with respect to the world frame, the user must select
frames from both the camera family AND the vehicle family. As illustrated in figure 2-8, adding a value

for the vehicle’s parameter (time) to the function call does the job. See section 4.2.6 for details.

14

FRAME *frmi, *frm2;
FRAMEFAMILY *frmfam;

/* Declare frmfam as a camera frame family */

/* Select a frame relative to the vehicle from the camera
frame family for rol1=0.0, pan=0.0, tilt=20.0 */
frml = FselectlocalfromFF (frmfam, FFTIME, 3, 0.0, 0.0, 20.0);

/* Select a frame relative to the world from the camera
and vehicle frame families for rol1=0.0, pan=0.0,
ti1t=20.0, and time=47 */

frm2 = FseleclocalfromFF (frmfam, FFTIME, 47, 0.0, 0.0, 20.0)

Figure 2-8: Declaring frames from frame families

2.2.3 Operations on Locations

Locations are created by binding a shape (pointset) to a coordinate frame or family in which the
shape is expressed. The function LmakelocationF creates locations as illustrated in figure 2-9. In this
figure a location is made for a line segment expressed in the world frame. The function Lconvertloc
converts locations from one coordinate frame to another. In figure 2-9 a new location is created
(loc2) in which the original line segment is expressed in a new global frame. If a location cannot be
converted to another coordinate frame, that is, no known transformation exists between the base

frames or the transformation is ambiguous, a value of NULL is returned.

FRAME *frm;

LPOINTSET *pset;

LOCATION *locl, *1loc2;

POSE pose = {2.2,2.4,5.4,8.6,2.1,9.8,9.8,3.5,1.1};

/* Make a point set for a line segment */
pset = Llineseg (0.0, 0.2, 0.1, 4.2, 4.3, 2.9);

/* Make a location using this point set and the
world frame */
locl = LmakelocationF (WORLDF, pset);

/* Make a local frame based on the world frame */
frm = FmakelocalfromF (WORLDF, pose);

/* Convert locl to this new frame */
loc2 = Lconvertloc (locl, frm);

Figure 2-9: Creating and converting a location

In addition to making and converting locations, a number of functions exist for comparing locations

and computing secondary features of them. Functions are provided for computing the distance

15

between two locations or their overlap. Other functions compute the centroid, area, diameter,
orientation, convex hull, and minimum bounding rectangle of a location. This latter class of functions
perform two-dimensional operations in the x-y plane; thus, for three-dimensional locations the z-

coordinate is ignored. See section 4.2.7 for details.

2.3 Pattern-Matching Specifications

2.3.1 Building Specifications

Specifications are patterns for matching and recovering tokens stored in the blackboard database.
Each pattern is a boolean expression represented as a tree. The vertices of the tree are functions or
relations whose sons are input parameters and whose parent receives the output. The leaf nodes of
the tree are constants or token attribute names. The root node must return a boolean. A token
“matches" a pattern when the values of its attributes satisfy the pattern, that is, after the attribute

values are inserted into the corresponding leaf nodes, the tree evaluates to TRUE.

Specifications (specs) are implemented as a header node of type SPEC pointing to a tree of
SPECNODES. A spec node is a structure containing a type field and a body field. The type field
indicates the function, pattern-matChing attribute, or constant denoted by the specnode. The body
field contains either a function id, an attribute id, or constant data. The function Snewspec returns a
pointer to a spec header node which points to the root of the given spec node tree. Constant leaf
nodes are constructed using the functions S?const, where '?’ is a single character (i, f, b, s, e, u, and
I) denoting integer, floating point, boolean, String, enumerated, UDT, and location types. These
functions return spec nodes for constants of each type. The function Sattribute returns a spec node

for a given token attribute. See sections 4.3.1 and 4.3.2 for details.

The functions for contructing vertices in the spec tree are numerous and can be found in sections
4.3.3 through 4.3.7. Functions exist for boolean operations (AND, OR, NOT), algebraic operations
(ADD, SUBTRACT, MULTIPLY, DIVIDE), comparative operations (EQUAL, NOT EQUAL, LESS THAN,
GREATER THAN), string operations (SUBSTRING, REGULAR EXPRESSION SEARCH), and location
operations (AREA, CENTROID, DISTANCE, etc.). Each of these functions takes some number of spec

nodes as input and returns a singie specnode.

Figure 2-10 illustrates the construction of two specs. In the first spec, sp1, there are two attributes
to match: surface-id and intrsctn-area-id. Surface-id is the id for the global attribute SURFACE which
can match tokens of any type having this attribute. Intrsctn-area-id is the id for the local attribute
AREA of token type INTERSECTION. Therefore, spec sp1 can match only tokens of type

16

SPEC *spl, *sp2;

LPOINTSET *pset;

LOCATION *loc;

int intrsctn-area-id, surface-id, concrete-id, Tlocation-id;

/* Initialize -- load ids (see Section 2.4.1) */

/* Build a spec for matching all concrete intersections
larger than 100 square feet. */
spl = Snewspec (Sand (Sgreater (Sattribute (intrsctn-area-id),
Sfconstant (100.0)),
Sequal (Sattribute (surface-id),
Seconstant (concrete-id))));

/* Build a spec for matching a token of any type within
5 feet of world location (x=25, y=32, z=0). */

/* First create a point set and location. */
pset = Lpoint (25.0, 32.0, 0.0); ’
loc = Lmakelocation (WORLDF, pset);

/* Build the spec. */ :
sp2 = Snewspec (Sless (Sdistance (Sattribute (location-id)),
. Slocation (loc)),
Sfloat (5.0));

Figure 2-10: A program segment that constructs two specifications

INTERSECTION. Spec sp2, however, can match tokens of any type, since location-id is the id for the
internal attribute LOCATION, common to tokens of all types. Note that the functions for building
specs do not actually compute their named operations; instead, they build a structure that indicates to

the BB manager which functions to invoke on which parameters.

Figure 2-11 shows a token of type irﬁersection matching spec sp1 from figure 2-10. The attribute
values 200.0 and CONCRETE are inserted into the spec tree leaf nodes AREA and SURFACE
respectively. Since 200.0 is greater than 100.0, the function Sgreater returns TRUE. Likewise, since
CONCRETE equals CONCRETE, the function Sequal returns TRUE. Sand returns TRUE with two
TRUE inputs. Since the spec tree returns TRUE, the token matches the spec. Note that the spec

matches all tokens of type intersection with an area greater than 100.0 and a surface of type concrete.

Suppose a user needs to build a number of similar specs. Instead of building each spec separately,
a "generic" spec can be built with "slots”. Slots are place-holders that point to other specs. By
changing the value of a slot, a spec can be changed without building a new one (i.e. for items that
change over time). The functions Sindirect and Spointer aliow the user to embed "slots" in a spec.

The function Sindirect "attaches" the slot to the tree, and Spointer "points" it to a filled spec node.

17

-

T TRUE

Function

SPEC TREE

Sand

Function Function
Sgreater Sequal
CONCRETE CONCRETE
Local Attribute Floating Point Global Attribute Enumerated
of Intersection Constant Scalar
Area 100.0 Surface CONCRETE
N /
\ /
TOKEN N
N / B
Ttype Area Surface Attribute s \/ Attribute
Name Name
Intersection 200.0 CONCRETE | Attribute 2 A> Attribute
Value Value

Figure 2-11: Example of a token matching a spec

Figure 2-12 illustrates this method. In this example, a spec is repeatedly changed to recover

intersections with surface types matching a set of road unit tokens. See section 4.3.9 for details.

The module writer is not constrained to using the spec functions provided by the biackboard
software package. The package provides a facility for handling user-defined functions (UDF’s), that

18

SPEC *spl, *sp2;

SPECNODE *slot;

int intrsctn-area-id, surface-id, concrete-id,
roadunit-id, ttype-id;

/* Initialize -- load ids (see section 2.4.1) */

/* Build a spec to recover all road units */

spl = Snewspec (Sequal (Sattribute (ttype-id),
Siconst (roadunit-id)));

/* Build a spec to recover all intersections with
a surface of type <x>, where <x> is a slot */
sp2 = Snewspec (Sequal (Sattribute (surface-id),
stot = Sindirect ())):

/* Send spéc spl (see section 2.3.2) */

/* Loop -- for each matched token 't' do: */

/* Store the surface type of the road into the slot */
Spointer (slot, Seconst (Teread (t, surface-id)));

/* Send spec sp2 and recover and process all
intersections of the same surface type */

Figure 2; 12: Example of building a spec with a slot
is, functions written by the user and invoked by the BB manager during the matching pfocess. UDF’s
are defined in the file functions.c. This file is compiled separately and then linked with the BB
manager. During module initialization, the BB manager passes ids for the function names to the
module (see section 2.4.1). Passing these ids to the function Sudf enables the user to reference a

UDF from within a spec tree. See section 4.3.10 for details.

2.3.2 Managing Specification Lists '

Modules request tokens from the blackboard via specification lists. A specification list is a set of
specs ORed together, that is, a token satisfies a specification list if it matches at least one of the
specifications in the list. The function Snewlist allocates spec lists, Sfreelist frees a list, and

Saddspec adds a spec to a spec list. See figure 2-13 for a program segment that uses spec lists.

in this program segment, LIST1 is passed to Snewlist. This user-supplied id humber is bound to the
spec list and is used to refer to the spec list in subsequent communication with the BB manager. The

user must take care not to assign the same id number to more than one spec list. The user also

19

#define LIST1 1

SPECLIST *s1;
SPEC *spl, *sp2;

/* Build specs spl and sp2 */

/* Create a spec list and add specs spl and sp2 to it */

st = Snewlist (LIST1);
Saddspec (s1, spl, 1, BBLOCK);
Saddspec (s1, sp2, 2, BBNOLOCK);

/* Free the spec list */

Sfreelist (s1);

Figure 2-13: Program segment that uses spec lists
supplies ids 1 and 2 for specs sp1 and sp2 respectively. These ids are used by the BB manager to
inform the module which spec in the list a given token matches. The option BBLOCK instructs the BB
manager to lock a token that matches the registered specification, that is, refuse other modules
permission to modify the token until the locking module uniocks it. The BBNOLOCK option instructs

the BB manager to allow modifications. See section 4.3.11 for details.

2.4 Communicating with the BB

2.4.1 Establishing Connections to the BB ‘

The function BBinit is provided to open communication with the blackboard manager. BBinit sénds
a message to the blackboard manager, providing it with a module name and a network address. The
BB manager logs the name and address in the module table and sends a list of identifiers and their
corresponding identification numbers back to the module. These identifiers are those defined in the
template.init file (see Appendix il). All token type, attribute type, enumerated type, UDT, UDF, and
scalar names are bound in this way to IDs (integers), becauée IDs offer a faster and more efficient

mechanism for referencing these items than strings.

BBinit must be invoked before any other BB function. The module is responsible for allocating
storage for these ids as well as a table for mapping the identifiers to the id addresses. 1Ds should be
declared as integers; a set of macros is provided in module.h for building the table. The macros
BINDTOKENTYPEID, BINDLOCALATTRID, BINDGLOBALATTRID, BINDINTERNALATTRID,
BINDFUNCTION, BINDUDTID, BINDENUMTYPEID, and BINDSCALARID bind names for token types,

20

local, global, and internal attribute types, UDF, UDT, enumerated types, and enumerated-type scalars
(respectively) to IDs. See sections 4.4.1 and 4.4.2 for details. See figures 2-14 and 2-15 for a program
segment that uses these macros.
/* Allocate integers for the ids of interest */
int intersection-id, roadunit-id, surface-id,
traversed-id, intrsctn-area-id,
intrsctn-control-id, intrsctn-location-id,
roadunit-area-id, surfacetype-id,
controltype-id, concrete-id, asphalt-id,
gravel-id, dirt-id, stopsigns-id,
trafficlight-id;

/* Build the mapping table */
BEGINIDLIST

/* Get the id for the intersection token type */
BINDTOKENTYPEID("intersection”,intersection-id)

/* Get the ids for the interesting attributes of token

type intersection */
BINDLOCALATTRID(intersection-id,"area",intrsctn-area-id)
BINDLOCALATTRID(intersection~id,"control",intrsctn-control-id)

/* Get the id for the road unit token type */
BINDTOKENTYPEID("roadunit",roadunit-id)

/* Get the id for the interesting attribute of token
type road unit */
BINDLOCALATTRID(roadunit-id,"area",roadunit-area-id)

/* Get the ids for the giobal attributes */
BINDGLOBALATTRID("surface",surface-id)
BINDGLOBALATTRID("traversed",traversed-id)

/* Get the id for the internal attribute of interest */
BINDINTERNALATTRID("location",intrsctn-location-id)

/* Get the id for the enumerated type surfacetype */
BINDENUMTYPEID("surfacetype"”,surfacetype-id)

Figure 2-14: Program segment that uses the macro facility for
recovering ids. The segment is continued in figure 2-15

As shown in this program segment, the user need not request the ids for all identifiers in
template.init. The macro BINDLOCALATTRID requires a token type id along with the attribute name.
This id is required to distinguish between local attributes with the same name in different token types.
Although internal attribute names do not appear in template.init, they can be recovered nonetheless

with the macro facility (as seen with the location attribute).

21

/* Get the ids for the scalars of surfacetype */
BINDSCALARID(surfacetype-id,"concrete",concrete-id)
BINDSCALARID({surfacetype-id,"asphalt",asphalt-id)
BINDSCALARID(surfacetype-id,"gravel"”,gravel-id)
BINDSCALARID(surfacetype-id,"dirt",dirt-id)

/* Get the id for the enumerated type controltype */
BINDENUMTYPEID("controltype",controltype-id)

/* Get the ids for the scalars of controltype */
BINDSCALARID(controltype-id,"stopsigns",stopsigns-id)
BINDSCALARID(controltype-id,"traffictight”,trafficlight-id)

/* End the list of macros *

ENDIDLIST

main () {

/* Module declarations */

/* Establish communication with the BB manager and bind ids */
BBinit();

/* Module body */

Figure 2-15: Program segment that illustrates the macro facility
continued from figure 2-14

2.4.2 Depositing New Tokens in BB

New tokens are deposited in the blackboard database with the function BBputtoken. The BB
manager assigns the token a unique id number, which is returned by the function. The BB manager
writes this id into the token’s internal attribute Tid. All of the remaining internal attributes are also
written at this time, including a generation number (Tgen) of 1, the time the token was inserted into
the blackboard (Titime), and the time it was last modified (Tmtime). Tmtime is initially set to Titime.

See section 4.4.4 for details.

Figure 2-16 illustrates the use of this function. A token is created, attributes are written, and the

token is sent to the blackboard.

22

TOKEN *t;

LPOINTSET *pset;

LOCATION *1;

int intersectionid, digtime, tlocationid;

/* Initialize --"Toad ids (see section 2.4.1) */
/* Allocate a new token of type 'intersection’ for an

image digitized at time ’digtime’ */
Tnewtoken (intersectionid, digtime);

t

/* Create a polygon location with four vertices */
pset = Lnewpointset (LPOLYGON, 4);

/* Load the four points */

Laddpoint (pset, 10.2, 11.5, 0);
Laddpoint (pset, 10.6, 23.2, 0.0);
Laddpoint (pset, -11.9, 10.4, 0.0);
Laddpoint (pset, -10.9, 27.1, 0.0); -

/* Make the location */
1 = Lmakelocation (WORLDF, pset);

/* Write the 'Tlacation attribute */
Tlwrite (t, tlocationid, 1);

/* Send the token to the BB */
tid = BBputtoken (t);

Figure 2-16: Senda new token to the BB

2.4.3 Recovering Tokens from the Blackboard Using Specs

As previously discussed, specs and spec lists are used for matching and recovering tokens from the
blackboard. The software package brovides functions for sending spec lists to the BB manager,
along with options that dictate the mode of synchronization for token recovery between the BB
manager and the module and options that instruct the BB manager when to expire spec lists. There

are two primary protocols:

¢ Standing spec lists: The calling module sends a standing spec list to the BB manager
and then resumes execution without blocking. Whenever a token appears in the
blackboard that matches the spec list, it is immediately sent to the module. The module
suspends its current task and jumps to an interrupt routine to process the token, then
resumes execution normally. The spec list remains active to match new or modified
tokens. Standing specs lists are a convenient facility for matching urgent tokens, that is,
tokens that require immediate action regardless of when or how often arrive in the local
map.

¢ One-shot spec lists: The calling module sends a one-shot spec list to the BB manager
and blocks. All tokens matching the one-shot spec list at the time of its arrival at the BB

23

are sent back to the module and deposited in token queue. The calling module is
unblocked, resumes execution, and is free to recover the tokens from the queue. If there
are no matching tokens in the BB database at the time the spec list arrives, the BB
manager unblocks the calling module either immediately or after a matching token is
eventually deposited, depending on whether the user specifies the BBNOWAIT or
BBWAIT option respectively. Once a token or set of tokens matches a one-shot spec list,
the BB manager deletes the spec list. One-shot spec lists are convenient for specifying
what tokens a module needs currently. They force tightly-coupled synchronization
between calling modules and the BB manager.

The functions for sending standing and one-shot specs lists are BBsendstandingspec and
BBsendoneshotspec. In addition to a spec list, BBsendstandingspec requires a function for
processing matching tokens and BBsendoneshotspec requires a waiting option of BBWAIT or -
BBNOWAIT. - .

Tokens matching a one-shot spec list are deposited in the token queue. The function BBgettoken
retrieves tokens from the queue. It returns a value of BBEMPTY if the queue is empty. See sections
4.4.3 and 4.4.4 for details. Figure 2-17 a program segment that sends spec lists and receives tokens.

2.4.4 Sending and Receiving Tokens by ID

Thus far we have discussed the means forA depositing new tokens in the database and recovering
existing tokens via specifications. If a module knows the ID of a token in the database (i.e. the module
deposited it or examined it previously), it can use the function BBgetidtoken to recover the token, thus
avoiding the overhead of matching specs to tokens. As with specifications, the module must specify
BBLOCK or BBNOLOCK with the function call. |

Once a token has been recovered from the database (either by spec or id) with the locking option,
the module may modify the token and replace it with the function BBreplacetoken. Note that this
differs from BBputtoken, as it overwrites an existing token rather than creating a new one. i the
module decides not to'modify the token, it may unlock it with BBunlocktoken. Finally, a module may

delete a token with BBdeletetoken. See section 4.4.5 for details.

2.5 Implementation Strategies

2.5.1 Module Structure

The module interface is a set of routines and data structures for compilation with the user’'s module,
providing the module writer with routines for manipulating tokens and specifications and for .
communicating with the BB manager. A block diagram for the implementation of the module

interface is depicted in figure 2-18. The components of figure 2-18 are individually described below:

24

#define TRUE 1
int sid, slid;

/* Initialize -- get ids */
/* Build standing spec list s11 */

/* Send s11 to the BB manager */
BBsendstandinglist (s11, urgentfunc);

/* Begin primary task */
while (TRUE) {

/* Build one-shot spec list si12 */

/* Send s12 to the BB manager and return
with or without a match */
BBsendoneshotlist (s12, BBNOWAIT);

/* Recover all available tokens */
while ((t = BBgettoken (&sid, &slid)) != BBEMPTY) {

/* Process the token */

}

/* Function for processing urgent tokens */
urgentfunc (t, sid, slid)
TOKEN *t;
int sid, slid; {
/* Process the token */

3

Figure 2-17: Program segment that sends spec lists and receives tokens

e /D list: a block of storage defined by the user for holding ID numbers. - This list is
downioaded by the input message processor when it receives the initialization message
from the BB manager.

e User routines: the heart of the user program. This block contains the code that
implements the sensor, KS, or cognition module. These routines access the module
interface through token, spec, and BB function calls.

e Urgent spec handling functions: the functions specified by the user for processing urgent
tokens, that is, tokens that match a standing spec list.

o Spec functions: the group of functions for building specifications.

25

User-Written Module Network
Code Interface
| |
D tist | _ I
I Spec
Functions |
| |
| |
| Token StTol:en |
e Functions Deruc.ur.e T‘
Routines I scription |
| N
Funthi)ns Output Network I
l Message > Interface T_—>
, Processor I
| External I
Token
e l Queue nput |
Urgent I Message ¢ I
Spec | Internal Processor |
i Token
Handling Qu)
Functions I == I
r ’ To
l 1D List '

Figure 2-18: Module interface block diagram

e Token functions: the group of functions for allocating, deleting, reading, and writing
tokens. These functions access the token structure description data structure.

e BB functions: the group of functions that sends and receives tokens, specs, and other
messages to and from the BB manager. All output messages are routed through the
output message handler. Tokens that match a one-shot spec are recovered from the
external token queue. Individually addressed tokens and error messages are recovered
from the input message processor. :

26

e Token structure description: a data structure that encapsulates all the information in
template.init. Token functions access for reading and writing token attributes. The
structure is downloaded by the BB manager via the input message processor during
initialization.

e External token queue: a queue of tokens sent by the BB manager that matched a one-
shot spec list. The queue is loaded by the input message processor. BB functions
extract tokens from the queue.

e Internal token queue: a dueue of tokens sent by the BB manager that matched a standing
spec list. The input message processor uses this queue as temporary storage before
passing the urgent tokens on to an urgent spec handling function.

e Output message processor: a set of routines that receives tokens, specs, and other data
from the BB functions, packs them into messages, and passes them on to the network
interface for transmission to the BB manager.

e input message processor: a set of routines for handling all input messages. These
routines download the ID Jist and the token structure description from the initialization
message. Individually addressed tokens are passed directly to the calling BB function,
while tokens matching a one-shot spec list are inserted into the external token queue.
Tokens matching a standing spec list are inserted into the internal token queue to await
processing by an urgent spec handling routine.

e Network interface: a set of routines for sending and receiving messages to and from the
BB manager over a network or through inter-process communication channels.

2.5.2 The Algorithm ‘

The user initializes the module interface by calling BBinit. BBinit sends the module’s name and
address and a list of identifiers to resolve to the BB manager via the output message processor and
blocks. The BB manager replies with a list of ID numbers and token type descriptions. The arriv.al of
the return message generates a software interrupt and control is passed to the input message
processor. The input message processor downloads the /D list and the token type descriptions.

BBinit unblocks and returns.

The user accesses the module interface via the token, spec, and BB functions. The BB functions
that send one-shot spec Iists or access tokens individually block until a return message is received.
All return messages are handled by the input message processor. Whenever a message arrives from
the BB manager, a software interrupt is generated, and control is passed to the input message
processor. The following action is taken, depending on the message type:

e Individually addressed token: the token is passed directly to the calling BB function, and
the function returns.

27

e Error message or status information: the message is passed directly to the calling BB
function, and the function returns.

e Frames or frame family information: the message is passed directly to the calling frame or
frame family function and execution resumes.

e Token matching a one-shot spec list: the token is inserted into the external token queue,
the calling BB function returns, and the user is free to recover the token using the
appropriate BB function.

e Token matching a standing spec list: the token is inserted into the internal token queue to
await processing by an urgent spec handling function.
Once the input message processor has processed all incoming messages, it extracts each token from
the internal token queue one by one and invokes the appropriate urgent spec handling function to

process the token. The input message processor relinquishes control once the queue is empty.

28

3. The Blackboard Manager

The blackboard manager is a self-contained module, compiled separately and linked with the user-
defined functions (UDF’s). It manages the blackboard database, a collection of data structures that
resides in the blackboard manager’s address space. The blackboard database provides storage for
tokens, inserted by knowledge sources, conceptual, and virtual vehicle processes. The BB manager
services requests to insert, modify, and delete tokens in this database. Processes requesting tokens
can do so using patterns (specifications), requiring the BB manager to attempt to match these
patterns with tokens in the database. Other tasks include scheduling token requests which arrive
asynchronously over the network or through inter-process channels, expiring old tokens too far from

the vehicle to be of interest, and recording the history of vehicle positions over time.

3.1 BB Manager Structure

Figure 3-1 shows a block diagram for the structure of the BB manager. The individual components
are:

e Network interface: a set of routines for sending and receiving messages to and from
user-written modules over a network or through inter-process channels,

e /nput message processor: a set of routines for handling all input messages. All messages
including tokens, specifications, error, and control are routed through this module.

e Output message processor: a set of routines that transmits messages from the input
message processor to user-written modules.

e BB initialization routine: a routine that reads template.init, loads token structure
description and ID list, and instructs the input message processor to accept incoming
messages.

e Pattern-matching tunctions: a large collection of functions used by the input message
processor to match specifications to tokens.

e UDFs: a module of user-defined functions linked with the BB manager and used in the
same way as pattern-matching functions.

e Token database: all tokens residing in the blackboard database. Tokens are stored and
retrieved via the input message processor.

® Pending speclist table: a table of all pending speclists awaiting a token to match. This
table is managed by the input message processor.

e Token structure description: a data structure that encapsulates all information in
template.init. This data structure is downloaded by the BB initialization routine and is
used by the input message processor. :

Network BB Manager Blackboard
Code
| I Token
I I Database
| Pattern- - - -
| Matching UDF’s | #6 Manager Data
I Functions '
Pending
I Speclist
I Table
Input
Network .
| I > ——— Message iD
I Interface _ Processor List
I Token
Structure
I Output BB Description
Message Initialization
I Processor * Routine - - - - =
I Disk File
' I Template.init
| 1

Figure 3-1: BB Manager Structure

e ID list: a list that maps identifiers to ID numbers. The list is downloaded by the 88
initialization routine and is used by the input message processor.

3.2 Overview of Algorithms

At start-up the BB initializer loads the file template.init from disk, assigns IDs to all identifiers in the
file, stores these IDs in the ID list, stores the token and attribute structure in the token structure

description, and instructs the input message processor to begin accepting messages.

The BB manager receives requests as messages sent over a network or through inter-process
channels. Arriving messages are passed by the network interface to the input message processor.
The message type determines the action taken by the input message processor. The four message

types are initialization, specification, new token, and direct addressing:

3.2.1 Initialization Messages '

Each process (KS, sensor, or virtual vehicle) sends an intialization message to the BB manager.
This message contains the name and net address of the process and a list of identifiers for token type
names, attribute names, enumerated-type names, scalar names, UDF names, and UDT names (see
section 2.4.1). The input message processor logs the name and address into the module address
table assigns the process an ID, and looks up the IDs for each of the identifiers in the /D list. A
message containing the process ID and the list of indentifier IDs is sent back to the calling process via
the output message processor. The calling procesé tags future messages to the BB manager with the
process ID number for easy identification. In some implementations the name and address of each

process in the system may need to be logged with the BB manager before any messages can be sent.

3.2.2 Specification Messages

Specifications are bound together in list and shipped to the BB manager in a message (see section
2.4.3). Each spec list has an ID and a type (either standing or one-shot). The individual specs in the
list have IDs. The input message processor logs this information into the pending speclist table
tagged with the ID of the calling process. For each specification in the list, the input message
processor examines all embedded attributes and determines the set of token types it can match. fhe

intersection of all of these sets is the set of token types a given spec can match (the type set).

After compiling this information, the input message processor examines the spec list's type. If the
list is standing, the input message processor invokes the pattern-matching functions and UDF’s to
attempt to match the spec list to tokens in the token database, constrained by the type set. All
matching tokens are tagged with the spec ID and sent back to the calling process via the output
message processor in a single message. |If specified, matching tokens in the database are locked.

Standing specs are retained for future matching. The matching procedure for one-shot spec lists is

31

the same; however, the life of a one-shot spec list differs from that of a standing list. If the calling
process specifies the NOWAIT option, the input message processor deletes the spec list after
attempting to match it to the tokens in the database, whether the list matched any tokens or not. If the
WAIT option is specified, the BB manager sends all matching tokens back to the calling process and
deletes the spec Iist,v unless no tokens match. In this case, the spec list is not deleted until a new or

modified token matching the list is inserted into the token database.

3.2.3 New Token Messages

When a new token arrives from a calling process, the input message processor assigns it a unique
ID number, sets its generation number to one, and records the time it arrived and the ID number of the
process that deposited it. The ID number is sent back to the calling process. The token is placed into
the token database. with the same type. The input message processor attempts to match the token
to all specs in the pending speclist table. The token is sent to ali processes whose matching spec did
NOT request a lock. The token is also sent to the process with highest priority that requests a lock.
Process priorities are determined before the system is booted and are written into a file to be read by

the BB manager.

3.2.4 Direct Addressing Messages

This class of messages includes requests to get, replace, unlock, and delete existing tokens in the
database. The calling processes address tokens by their ID numbers. For requests to get a token, the
input message processor locks the token (if _requested) and sends it back to the calling process.
Errors are returned if the token is already locked or does not exist. For requests to replace a token,
the input message processor overwrites the existing token with the new token, provided the calling
process has the token locked. The replaced token is unlocked and treated as a new token (see the
previous section). Errors are returned if the token does not exist or if the calling process does not
have the token locked. For requests to unlock a token, the input message processor unlocks it and
attempts to match the token against all specs in the pending speclist table requesting a lock. The
token is sent to the process with the highést priority. Errors are returned if the token to unlock does
not exist or if the calling process does not have it locked. For requests to delete tokens, errors are
returned if the token does not exist or if another process has it locked; otherwise, the token is deleted.

4. Reference Manual

This chapter describes alt spec, token, and BB functions available to the user in the module
interface. The syntax and effect of each function is given, indexed by function name. The auxillary
files template.init and functions.c are also described. Examples of the functions and files in this

chapter can be found in chapter 2.

4.1 System Data Structures

All of the data structures tokens, arrays, locations, strings, UDTs, poses, point sets, frames, frame
families, parameter lists, specs, and spec lists are cfeated dynamically. Care must be exercised in
including these data structures in other structures, deleting them, and inserting and retrieving them
from the blackboard database to ensure that they are not corrupted. The following sections explain

how to manipulate such structures.

4.1.1 Tokens

Tokens created with Tnewtoken are loca/v only; that is, a block of memory of the right size
(depending on the type) is created in the user’s address space. All of the attributes are initialized to
zero with the exception of TCTIME and TTYPE, which are set according to the arguments to
Tnewtoken. NULL pointers are written into the attribu}e slots for the aggregate types {(array, location,
UDT, and string). When the token is deposited into the blackboard with BBputtoken, space is
allocated in the LMB’s address space, and all attributes are copied frbm the local copy into the global
blackboard copy. All attributes except TCTIME, TTYPE, and TLOCATION are written by the LMB into
the global (blackboard) copy of the token. The intérnal attributes of the local copy remain unaffected.
BBputtoken returns a unique global ID'for the token. In order to change a global copy of a token, it
must first be retrieved with BBgetidtoken. This function makes a local copy of the token and copies
all attributes (including internal) into the local copy. BBreplacetoken creates a new global token,

copies the local token to the global, deletes the old global token and replaces it with the new one.

Once a local token has been copied to the blackboard (i.e. with BBputtoken or BBreplacetoken), it
is advisable to delete the local copy (to avoid wasting memory). Likewise, local copies of tokens
retrieved from the blackboard (i.e. via BBgettoken), should be deleted once they are no longer
needed. Local tokens are deleted with Tfreetoken. Note that the blackboard copy is not deleted.
Tfreetoken also deletes all aggregate attributes contained in the token. Therefore, it is unwise to
include such structures in more than one token, spec, location, array, etc. Instead, these structures

should be copied. Tokens in the blackboard database can be deleted by ID with BBdeletetoken.

4.1.2 Locations and Substructures

Locations are created locally with LmakelocationF and LmakelocationFF. Locations consist of a
point set and a pointer to a frame or frame family in which the points are expressed. Point sets are
created with Lnewpointset, Lpoint, and Llineseg. Local locations are deleted using Lfreelocation.
This function also deletes the location’s point set, but does not delete its coordinate frame or frame

family.

When locations are sent to the blackboard (either via tokens or specs), the point set is transformed
to the first global or system (world, vehicle, or null) frame encountered in the reference chain.
Therefore, tokens retrieved from the blackboard will always contain location data expressed in
nonlocal frames. If the user wishes to manipulate this data in a local frame, he/she may do so by first

invoking Lconvertloc on the data.

Frames and frame families are intended to be included in more than one location, frame, or frame
family, and for this reason they are not deleted when the parent structure is deleted. Lbca! frames are
created with FselectiocalfromFF, FmakelocalfromFF, and FmakelocalfromF. Local frames are known
only to the module that defines them. For this reason, no global frame may have a local base frame.
Global frames are created with fFselectglobalfromFF, FmakeglobalfromFF, and FmakeglobalfromF.
Like the functions that create local frames, these functions allocate space locally for the global
frames; additionally, this information is sent to the blackboard and a global ID is returned and stored
in the local structure. In order to make changes to a glqbal frame, the function Fgetglobalupdate
should be invoked (using the pointer to the local structure refering to it), the frame is altered using

Fwritebase and/or Fwritepose, and the update sent to the blackboard using Fputglobal.

The set of all globél and local frames in the blackboard system during execution should at all times
form a forest of trees, that is, there may be no cycles in the frame reference graph. Any such cycles
will crash the system. In order to compare location data expressed in two different coordinate frames,

the system finds the ancestor of the frames in the tree, and transforms the data to this frame.

The user must exercise extreme caution when deleting either local (via Ffreelocal) or global (via
Ffreeglobal) frames. If a deleted frame is referenced by another frame or location, havoc will resulit.
Admittedly, this feature is undesirable; future implementations will only permit a frame to be deleted

when the reference count is zero.

34

4.2 Token Declarations and Operations

4.2.1 Token Template File Description

Token template file
The file template.init contains four types of declarations in any order:

e Enumerated type declarations
e UDT declarations
e Global attribute declarations

e Token type declarations

The file may also contain include statements to include other declaration files.
The exact syntax is given in appendix Il.

Enumerated type declarations
Each declaration is of the form:

ENUM <enum-type-name> = { <enum-scalar>,
<enum-scalar>,

}
where <enum-type-name> and <enum-sclar)> are identifiers denoting the name for
the enumerated type and its scalars respectively. There may be any number of
scalars.

UDT declarations
Each declaration is of the form:

UDT <user-type-name>;
where <user-type-name> is an identifier denoting the name for the UDT.

Array type declarations
An array is an ordered set of elements of any attribute type and indexed by

positive integers. The syntax for the array type is:

ARRAY <arrayname> [<num-of-elem>] OF <attribute-type> ;
where <arrayname> is an identifier denoting the string name of the array, <num-of-
elem> is a number denoting the number of elements in the array, and <attribute-
type> is any attribute type. Arrays are indexed by integers in the range 0 through
<num-of-elem> - 1.

Global attribute declarations
Each declaration is of the form:
GLOBAL <global-attribute-name> : <global-attribute-type>;
where <global-attribute-name> is an identifier denoting the name of the global
attribute and <global-attribute-type> is the attribute type.

Token type declarations
Each declaration is of the form:

35

TOKEN <token-type-name> {
<attribute-statement>
<attribute-statement>

};
where <token-type-name> is an identifier denoting the name of a token type, and
<attribute-statement) is either a local attribute declaration or an global attribute
reference. Since global attributes are defined elsewhere, they need only be
referenced for inclusion in a token type. Tokens may have any number of global
and/or local attributes.

Local attribute declarations

Each declaration is of the form:

<local-attribute-name> : <local-attribute-type> ;
where <local-attribute-name> is an identifier denoting a local attribute name and
{local-attribute-type> is an attribute type. Local attributes may be declared only
within a token type declaration.

Include statements

Each statement is of the form:
INCLUDE <file>;
where <file> is a string denoting the name of an inclusion file.

Global attribute references

Attribute types

Each reference is of the form:

<global-attribute-name> : GLOBAL ;
where <global-attribute-name> is'an identifier denoting the name of a global
attribute declared in a global attribute declaration.

Possible values for attribute types are INT, FLOAT, BOOL, STRING, LOCATION,
enumerated type name, UDT name, and array type name, denoting integer,
floating point number, boolean, string, location, UDT, and array respectively.
Integers and booleans are four-byte data quantities. Floating point numbers are
single precision (four-byte quantities). A location is a pointer to a structure
containing a location size (number of coordinate points) and a pointer to an array
of coordinate points. A coordinate point is a structure of two floating point
numbers denoting x and y. A UDT is a pointer to an unstructured stream of bytes.
Enumerated types are four-byte integers for the scalars declared in the
corresponding enumerated type declaration.

Internal attributes

internal attributes are common to all token types and therefore don’t need to be
explicitely declared. Internal attributes are all four-byte integers, with the
exception of TLOCATION, which is a pointer to a location structure. Just like
global and local attributes, they have names. The internal attributes are:

e TTYPE: the token type id number

e TiD: aunique ID number for the token

Identifiers

Strings

Numbers

Whitespace

Comments

36

o TGEN: the generation number of the token

o TCTIME: the time of the coordinate system used in this token

e TITIME: the time the token was inserted into the BB

o TMTIME: the time the token was last modified

e TCREATOR: the ID number of the module which created the token

o TLOCATION: a LOCATION for storing the token’s position on the
local map

All internal attributes (with the exception of TTYPE, TCTIME, and TLOCATION) are
written by the LMB into the blackboard copy of the token when it is inserted with
BBputtoken. The attributes TGEN and TMTIME are updated in the blackboard
copy of the token when replaced with BBreplacetoken.

Legal identifiers are sequences of upper and lower case letters, digits, and the
minus sign '-’, up to a maximum of 64 characters. Letters are case:folded, so that
'NAME’ is the same as 'name’.

Strings are sequences of up to 128 characters, delimited by double quotes. Any
characters with the exception of the delimiters may be included in the string.

The number constants permitted are positive integers, up to 16 characters (digits
in the inclusive range of 0to 9) in length.

The characters space, tab, carriage return, and newline may appear anywhere in
the file and are discarded by the parser.

Comments are permitted anywhere in the file and are delimited by the prefix '/*'
and the postfix '*/’.

4.2.2 Token and Attribute Functions

The following functions create, read, write, and delete local copies of tokens. These functions do

not affect tokens stored in the blackboard database. See section 4.4 for functions that read and write

tokens into the database.

Tnewtoken

Tfreetoken

This function allocates space (locally) for a token of type 'ttype’ with a time stamp
of 'ctime’, and returns a pointer to it. The attribute fields of the token are
initialized to null values.

t = Tnewtoken (ttype, ctime);

TOKEN *t;

int ttype, ctime;

This function frees a token (local copy only) pointed to by 't’. All array, UDT, and
location attributes in the token are also deleted.

T?read

T?write

Tfreeto
TOKEN *

ken (t);
t;

37

This class of functions returns an attribute value for the attribute with id 'aid’ in the
token 't’. The symbol '? is an attribute designator, a single character (i, f, b, s, e,
u, |, or a) denoting the type of the attribute returned (integer, floating point,
boolean, string, enumerated, UDT, location, or array respectively).

ival =
fval =
bval =
sval =
eval =
uval =
lval =
aval =
int iva
float f
char *s
UDT *uv
LOCATIO
ARRAY *
TOKEN *

Tiread (t,
Tfread (t,
Tbread (t,
Tsread (t,
Teread (t,
Turead (t,
Tiread (t,
Taread (t,

aid);
aid);
aid);
aid);
aid);
aid);
aid);
aid);

1, bval, eval, aid;

val;
val;

al;

N *lval;
aval;

t;

This class of tunctions writes "?val’ into the attribute with id ’aid’ in token 't’. The
symbol '?" is an attribute designator, a single character (i, f, b, s, e, u, |, a) denoting
the type of the attribute returned (integer, floating point, boolean, string,
enumerated, UDT, location, or array respectively).

Tiwrite
Tfwrite
Tbwrite
Tswrite
Tewrite
Tuwrite
Tlwrite
Tawrite
int iva
float f
char *s
UDT *uv
LOCATIO
ARRAY *
TOKEN *

4.2.3 UDT functions

Unewudt

Uassignudt

ival);
fval);
bval);
sval);
eval);
uval);
1val);
aval);

1, bval, eval, aid;

(t, aid,
(t, aid,
(t, aid,
(t, aid,
(t, aid,
(t, aid,
(t, aid,
(t, aid,

val;

val;

al;

N *lval;

aval;

t;

Th'is function allocates a new UDT. A pointer to the UDT is returned. A UDT
should NOT be written into more than one token, spec, or array; instead, copies of

the UDT should

be used.

u = Unewudt ();

UDT *u;

This function loads UDT ’u’ with the unstructured data of size 'dsize’ pointed to by

'data’.

Ucopyudt

Ufreeudt

38

Uassignudt (u, data, dsize);
UDT *u;

char *data;

int dsize;

This function makes a copy of the UDT pointed to by 'udt1’ and returns a pointer
to the copy. This is the "correct” way to include a UDT in two tokens, specs,
arrays, etc.

udtZ2 = Ucopyudt (udtl);
UDT *udtl, *udt2;

This function de-aliocates the UDT pointed to by 'u’. UDT's which have been
written into tokens, specs, or arrays should NOT be deleted with Uireeudt, as this
operation will corrupt any structure containing the UDT.

Ufreeudt (u);
UDT *u;

4.2.4 Pose Functions

Pose Data Type This data structure is a 4 by 4 matrix 'M’ of floating point numbers denoting an

Pnewpose

Pwriteelem

Preadelem

Pfreepose

affine transformation (translation, rotation, and scaling) of points from frame 'a’ to
a base frame 'b’. The last row of the matrix is assumed to be [0, 0, O, 1]. If X is
the homogeneous representation of a point in frame 'a’ and X represents the
same point in frame v’ then:
X, = M X,

Poses used in frames and frame families describe the transformation from the
frame or frame family to its base frame or family. Poses must be nonsingular. See
Jerry Agin’s pose package'in the stripe library.

This function allocates a new pose. All elements of the new pose are initialized to
zero, except for the element in the fourth row and fourth column, whach is
initialized to one. A pointer to the new pose is returned.

pose = Pnewpose ();
POSE *pose;

This function writes the value 'fval’ into row 'row’ and column 'col’ of pose 'pose’.

Pwriteelem (pose, row, col, fval);
POSE *pose;

int row, col;

float fval;

This function returns the value of the element in row 'row’ and column ‘col’ of

pose 'pose’.
fval = Preadelem (pose, row, col);
float fval;
POSE *pose;

int row, col;

This routine de-allocates the pose. Havoc will result if a deleted pose is
referenced by a frame or frame family.

Pfreepose (pose);
POSE *pose;

4.2.5 Frame Family Functions

FFmakepa ramlist
This function allocates a parameter list 'plist’ (list of time-pose pairs).

plist = FFmakeparamlist ();
FFPARAMLIST *plist;

FFaddtoparamilist
This function adds the time and transform pair 'ptime, ppose’ to the parameter list
‘plist’. _
FFaddtoparamlist (plist, ppose, ptime);
FFPARAMLIST *plist; - :
int ptime; '
POSE *ppose;

FFfreeparamlist This function de-allocates the parameter list 'plist’.

FFfreeparamiist (plist);
FFPARAMLIST *plist;

FFmakeglobalfromFF _

This function allocates a global frame family 'frmfam’ with a parameter list 'plist’
and a base frame family 'bfrmfam’. The base frame family must not be local, but
may be a user-defined global frame family or the vehicle (VEHICLEFF) frame
family. The new frame family is sent to the blackboard, and 'frmfam’ refers to it
locally. Whenever ’frmfam’ is accessed, a new copy is retrieved from the
blackboard. :

frmfam = FFmakeglobalfromFF (bfrmfam, plist);

FRAMEFAMILY *frmfam, *bfrmfam;

FFPARAMLIST *ptlist;

FFmakeglobalfromF
: This function allocates a global frame family 'frmfam’ with a parameter list 'plist’
and a base frame 'bfrm’. The base frame must be user-defined global frame, the
world frame (WORLDFF), or the null frame (NULLF). The new frame is sent to the
blackboard, and 'frmfam’ refers to it locally. Whenever 'frmfam’ is accessed, a
new copy is retrieved from the blackboard.
frmfam = FFmakeglobalfromF (bfrm, plist);
FRAMEFAMILY *frmfam;
FRAME *bfrm;
FFPARAMLIST *plist;

FFmakelocalfromFF
This function creates a local frame family ‘frmfam’ with base frame family
‘bfrmfam’, and a transform function named 'transform’ which takes 'numofpars’
floating point parameters (excluding a time parameter). The base frame family
may be local, user-defined global, or vehicle (VEHICLEFF). The transform

40

function returns a pose for a given set of parameters, which is used to transform
from a member of the base frame family to a member of the new family. If
"timearg’ is FFTIME, the transform function will be invoked with time (an integer)
as the first argument, and an array of 'numofpars’ parameters as the second
argument. If 'timearg’ is FFNOTIME, only the array will be passed (as the first
argument).

frmfam = FFmakelocalfromFF (bfrmfam, transform,

numofpars, timearg):

FRAMEFAMILY *frmfam, *bfrmfam;

POSE (*transform) ();

FFTIMEARG timearg;

int numofpars;

FFmakelocalfromF

This function creates a local frame family 'frmfam’ with base frame 'bfrm’, and a
transform function named 'transform' which takes 'numofpars’ parameters. This
function differs from FFmakelocalfromFF in that the base is a frame instead of a
frame family.

frmfam = FFmakelocalfromF (bfrm, transform,

numofpars, timearg);

FRAMEFAMILY *frmfam;

FRAME *bfrm;

POSE (*transform) ();

FFTIMEARG timearg;

int numofpars;

FFgetglobalid This function retrieves the ID number from the global frame family 'frmfam’,
id = FFgetglobalid (frmfam);
int id;)
FRAMEFAMILY *frmfam;

FFgetglobalfromid

This function retrieves the globa! frame family with ID number 'id’ and storesitina
newly allocated frame family 'frmfam’. Thereafter, 'frmfam’ can be used to refer
locally to the frame family. If 'lock’ is BBLOCK, the frame family is locked and no
other module may change it. If 'lock’ is BBNOLOCK, the frame family is not
locked. BBPROTECTED is returned in ’'status’ if the frame family is already
locked; BBGONE returned if the frame family has been deleted; BBSUCCESS is
returned if the operation succeeds.)

frmfam = FFgetglobalfromid (id, lock, status);

FRAMEFAMILY *frmfam;

int id, lock;

BBRESULT *status;

FFgetglobalupdate
This function retrieves an updated version of the global frame family 'frmfam’ (if
changed) from the blackboard. If 'lock’ is BBLOCK, the frame family is locked and
no other modute may change it. If "lock’ is BBNOLOCK, the frame family is not
locked. BBPROTECTED is returned if the frame family is already locked;
BBGONE is returned if the frame family has been deleted; BBSUCCESS is
returned if the operation succeeds.

FFputglobal

FFunlockglobal

FFwritebaseFF

FFwritebaseF

FFcheckbase

FFreadbaseFF

FFreadbaseF

4

‘status = FFgetglobalupdate (frmfam, lock);
BBRESULT status;

FRAMEFAMILY *frmfam;

int lock;

This function replaces an updated version of global frame family frmfam to the
blackboard and unlocks the family. BBPROTECTED is returned if the frame family
is already locked; BBGONE is returned if the frame family has been deleted;
BBSUCCESS is returned if the operation succeeds.

status = FFputglobal (frmfam);

BBRESULT status;
FRAMEFAMILY *frmfam;

This function unlocks the global frame family 'frmfam’. BBPROTECTED is

returned if the frame family is already locked; BBGONE is returned if the frame

family has been deleted; BBSUCCESS is returned if the operation succeeds.
status = FFunlockglobal (frmfam);

BBRESULT status;
FRAMEFAMILY *frmfam;

This function loads the base frame family in frame family 'frmfam’ with the frame
family 'bfrmfam’. Itis assumed that the base frame was previously nuli (NULLF).

FFwritebaseFF (frmfam, bfrmfam);
FRAMEFAMILY *frmfam, *bfrmfam;

This function loads the base frame in frame family 'frmfam’ with the frame 'bfrm’.
It is assumed that the base frame was previously null (NULLF)

FFwritebaseF (frmfam, bfrm);
FRAMEFAMILY *frmfam, *bfrm;

This function returns either BFRM if the base of global frame family 'frmfam’ is a
frame or BFRMFAM if it's a frame family.

test = FFcheckbase (frmfam);

BASETYPE test;

FRAMEFAMILY *frmfam;

This function returns a pointer to the base frame family for global frame family
'frmfam1’. The user is responsible for checking (via FFcheckbase) that the base
for 'frmfam1’ is a frame family and not a frame.

frmfam2 = FFreadbasefF (frmfaml);
FRAMEFAMILY *frmfam2, *frmfami;

This function returns a pointer to the base frame for global frame family 'frmfam’.
The user is responsible for checking (via FFcheckbase) that the base for 'frmfam’
is a frame and not a frame family.

frm = FFreadbasef (frmfam);

FRAME *frm;

FRAMEFAMILY *frmfam;

42

FFwriteparamlistThis function writes the parameter 'plist’ into the global frame family 'frmfam’.

FFwriteparamlist (frmfam, plist);
FRAMEFAMILY *frmfam;
FFPARAMLIST *plist;

FFreadparamlist This function reads the parameter list ’plist’ from the global frame family 'frmfam’.

FFfreelocal

FFfreeglobal

plist = FFreadparamlist (frmfam);
FFPARAMLIST *plist;
FRAMEFAMILY *frmfam;

This function de-allocates a local frame family 'frmfam’. Havoc results if a deleted
local frame family is referenced by another frame, frame family, or location.

FFfreelocal (frmfam);

FRAMEFAMILY *frmfam;
This function de-allocates a global frame family 'frmfam’. All frames, frame
families, and locations referencing a deleted global frame subsequently reference
to NULL. BBGONE is returned if the frame family has ailready been deleted, and
BBPROTECTED is returned if the frame family is locked by another module;
otherwise, BBSUCCESS is returned.

status=FFfreeglobal(frmfam);

BBRESULT status:
FRAMEFAMILY *frmfam;

4.2.6 Frame Functions

FselectlocalfromFF

This function creates a frame ’'frm’ by selecting frames from a chain of frame
families starting with local or global frame family 'bfrmfam’ and working
backwards. The 'n’ parameters ’par1, par2, ..., parn’ are extracted left to right and
inserted into the frame family transform functions as needed until the entire list is
used. Extra parameters are discarded. If a time value is specified, 'time - arg’
must be set to FFTIME and the value is passed in 'time’. All transform functions
requiring time as a input parameter are invoked with the 'time’ value as the first
argument. If no time value is specified, 'time - arg’ must be set to FFNOTIME. The
frame 'frm’ is local.
frm = FselectliocalfromfFF (bfrmfam, time_arg, time, n,

parl, par2, ..., parn);
FRAMEFAMILY *bfrmfam;
FRAME *frm;
FFTIME time_arg;
int n, time;
float parl, par2, ..., parn;

FselectglobalfromFF

This function creates a frame 'frm’ in the same manner as FselectlocalfromFF,
except that the base frame 'bfrmfam’ must be global. Giobal base frames are
parameterized only by 'time’. The frame 'frm’ is global.

43

frm = FselectglobalfromFF (bfrmfam, time);
FRAME *frm;

FRAMEFAMILY *bfrmfam;

int time;

FmakeglobalfromFF

This function makes a global frame ’frm’ with respect to base frame family
'bfrmfam’ and a pose of 'ppose’. The frame family 'bfrmfam’ must be user-defined
global or the vehicle frame family (VEHICLEFF). The new frame is sent to the BB
and 'frm’ refers to it locally.

frm = FmakeglobalfromFF (bfrmfam, ppose);

FRAMEFAMILY *bfrmfam;

FRAME *frm;

POSE *ppose;

FmakeglobalfromF
This function makes a global frame 'frm’ with respect to base frame 'bfrm’ and a
pose of 'ppose’. The frame 'bfrm’ must be user-defined global or the world frame
(WORLDF). The new frame is sent to the BB and 'frm’ refers to it locally.
frm = FmakeglobalfromF (bfrm, ppose);
FRAME *frm, *bfrm;
POSE *ppose;

FmakelocalfromFF
This function creates a local frame ‘frm’ with respect to base frame family
‘bfrmfam’ and a pose of 'ppose’.
frm = FmakelocalfromfFF (bfrmfam, ppose);
FRAMEFAMILY *bfrmfam;
FRAME *frm;
POSE *ppose;

FmakelocalfromF
This function creates a local frame ’frm’ with respect to base frame 'bfrm’ and a
pose of ‘ppose’.
frm = FmakelocalfromF (bfrm, ppose);
FRAME *frm, *bfrm;
POSE *ppose;

Fgetglobalid This function retrieves the ID number from the global frame ’frm’.‘
id = Fgetglobalid (frm);
int id;
FRAME *frm;

Fgetglobalfromid This function retrieves the global frame with ID number ’id’ and stores it in a newly
allocated frame 'frm’. Thereafter, 'frm’ can be used to refer locally to the frame. If
"lock’ is BBLOCK, the frame is locked and no other module may change it. If 'lock’
is BBNOLOCK, the frame is not locked. BBPROTECTED is returned if the frame
family is already locked; BBGONE is returned if the frame family has been deleted;
BBSUCCESS is returned if the operation succeeds.

44

frm = Fgetglobalfromid (id, lock, status);
FRAME *frm; :

int id, lock;

BBRESULT *status;

Fgetgiobalupdate

Fputglobal

Funlockglobal

FwritebaseFF

FwritebaseF

Fcheckbase

FreadbaseFF

This function retrieves an updated version of the global frame 'frm’ (if changed)
from the blackboard. It ’lock’ is BBLOCK, the frame is locked and no other
module may change it. If ’lock’ is BBNOLOCK, the frame is not locked.
BBPROTECTED is returned if the frame family is already locked; BBGONE is
returned if the frame family has been deleted; BBSUCCESS is returned if the
operation succeeds. »

status = Fgetglobalupdate (frm, Tlock);

BBRESULT status; :

FRAME *frm;

int lock;

This function writes an updated version of global frame 'frm’ to the blackboard
and unlocks it. BBPROTECTED is returned if the frame family is already locked;
BBGONE is returned if the frame family has been deleted; BBSUCCESS is
returned if the operation succeeds.

status = Fputglobal (frm);

BBRESULT status;

FRAME *frm; ’

This function unlocks the global frame 'frm’. BBPROTECTED is returned if the
frame family is already locked; BBGONE is returned if the frame family has been
deleted; BBSUCCESS is returned if the operation succeeds.

status = Funlockglobal (frm);

BBRESULT status;

FRAME *frm;

This function loads the base frame family in the locked frame ’frm’ with 'frmfam’.
The base frame is assumed to have been NULLF.

FwritebasefFF (frm, frmfam);

FRAMEFAMILY *frmfam;

FRAME *frm;

This function loads the base frame in the locked frame 'frm1’ with 'frm2’. The
base frame is assumed to have been NULLF.

FwritebaseF (frml, frm2);
FRAME *frmi1, *frm2;

This function returns either BFRM if the base of global frame 'frm' is a frame or
BFRMFAM if it's a frame family.

test = Fcheckbase (frm);

BASETYPE test;

FRAME *frm;

This function returns a pointer to the base frame family for global frame 'frm’. The

FreadbaseF

Fwritepose

Freadpose

Ffreelocal

Ffreeglobal

45

user is responsible for checking (via Fcheckbase) that the base for 'frm’ is a frame
family and not a frame. '

frmfam = FreadbasefFF (frm);

FRAMEFAMILY *frmfam;

FRAME *frm;

This function returns a pointer to the base frame for global frame’frm1’. The user
is responsible for checking (via Fcheckbase) that the base for 'frm1’ is a frame
and not a frame family.

frm2 = FreadbaseF (frml);
FRAME *frml, *frm2;

This function loads the pose 'ppose’ into the locked global frame 'frm'.
Fwritepose (frm, ppose);
FRAME *frm; - - .
POSE *ppose;

This function reads the pose 'ppose’ from the locked global frame 'frm’.
ppose = Freadpose (frm);
POSE *ppose;
FRAME *frm;

This function de-allocates a local frame 'frm’. Havoc results if a deleted local
frame is referenced by another frame, frame family, or location.

Ffreelocal (frm);
FRAME *frm;

This function de-allocates a global frame ’frm’. Aill frames, frame families, and
locations referencing a deleted global frame subsequently reference to NULL.
BBGONE is returned if the frame has already been deleted, and BBPROTECTED
is returned if the frame is locked by another module; otherwise, BBSUCCESS is
returned.

status = Ffreeglobal (frm);

BBRESULT status;

FRAME *frm;

4.2.7 Location Functions

Currently, all functions operating on tokens are two-dimensional (with the exception of Ldistance3).

All functions taking a single location as input ignore the z-coordinate of all points in the location.

Functions taking two locations as input transform the points into the common ancestor frame or

frame family of both locations, and then ignore the z-coordinates. Ldistance3 provides the user with

the minimum of support needed for three-dimensional operations. Eventually all of the location

functions will support three-dimensional operations if meaningful.

Currently, the software does not distinguish between convex and non-convex polygons. Functions

45

such as Ldistance and Lintersection assume all polygons are non-convex and thus use brute-force,

inefficient algorithms. Future releases will distinguish between the two types and use efficient

algorithms whenever possible.

Location Data Type

Lnewpointset

Lwritepoint

Lreadpoint

Lpointsettype

Lpointsetsize

A location is a set of three-dimensional points expressed in a coordinate frame or
frame family. There are four location subtypes:

e LPOINT: a single point in 3-space with x, y, and z coofdinates

'y LLINESEG} a line segment in 3-space with two endpoints (x1, y1, z1)
and (x2, y2, z2)

e [POLYGON: a simpie planar polygon described by a set of vertices
{three-dimensional points) such that the interior of the polygon lies
the right when traversing the vertices in order

e LSCATTER: a scattering of points in no particular order

This function creates a new point set 'pset’ of type 'type’ and a maximum size of
'size’. The parameter ’'type’ may be LPOINT, LLINESEG, LPOLYGON, or
LSCATTER. '

pset = Lnewpointset (type, size);

LPOINTSET *pset;

LPOINTSETTYPE type;

int size;

This function writes point 'x,y,2’ into the ’ith’ point of point set 'pset’. The index '{’
ranges from 0 to the size of the point set minus 1.

Lwritepoint (pset, i, x, y, Z);

LPOINTSET *pset;

int 1i;

float x, y, z;

This function reads the 'ith’ point from the point set 'pset’ into 'x,y,z’. The index i’

ranges from O to the size of the point set minus 1.
Lreadpoint (pset, i, x, y, z);:
LPOINTSET *pset;
int 1';_ .
float *x, *y, *z;

This function returns the point set type for point set 'pset’.
type = Lpointsettype (pset);
LPOINTSETTYPE type;

LPOINTSET *pset;

This function returns the size (number of points) of point set 'pset’.
size = Lpointsetsize (pset);
int size;
LPOINTSET *pset;

47

Lfreepointset This function de-allocates the point set 'pset’.

Lfreepointset (pset);
LPOINTSET *pset;

Lpoint This function creates a point set of type LPOINT and stores the point 'x,y,z’ into it.

pset = Lpoint (x, y, Z);
LPOINTSET *pset;
float x, y, z;

Llineseg This function creates a point set of type LLINESEG and stores the endpoints
'x1,y1,z1" and 'x2,y2,z2’ into it.
pset = Llineseg (x1, yl1, z1, x2, y2, z2);
LPOINTSET *pset; _
float x1, y1, z1, x2, y2, z2;

LmakelocationF This function creates a location 'loc’ from the point set 'pset’ with respect to
coordinate frame 'frm’. A location should NOT be written into more than one
token, spec, or array; instead, copies of the location should be used.

loc = LmakelocationF {(frm, pset);
LOCATION *1oc;

FRAME *frm;

LPOINTSET *pset;

LmakelocationFFThis function creates a location 'loc’ from the point set 'pset’ with respect to
coordinate frame family 'frmfam’. A location should NOT be written into more
than one token, spec, or array; instead, copies of the location should be used.

loc = LmakelocationFF (frmfam, pset);
LOCATION *loc; .

FRAMEFAMILY *frmfam;

LPOINTSET *pset;

Lcopylocation This function makes a copy -of the location pointed to by 'loct’ and returns a
pointer to the copy. This is the "correct" way to include a location in two tokens,
specs, arrays, etc.

loc2 = Lcopylocation (locl);
LOCATION *locl, *loc2;

Lfreelocation This function de-allocates location ’'loc’. The location’s point set is also deleted.
Locations which have been written into tokens, specs, or arrays should NOT be
deleted with Lfreelocation, as this operation will corrupt any structure containing
the location.

Lfreelocation (loc);
LOCATION *loc;

Lconvertloc This function creates a location 'loc2’ by converting location 'loc1' to frame 'frm’ if
‘btype’ is BFRM or to a frame family 'frmfam’ if 'btype’ is BFRMFAM. NULL is
returned if the location cannot be converted.

Lcheckbase

LgethaseF

LgetbaseFF

Lgetbaseid

Lgetpointset

Ldistance

Ldistance3

48

loc2 = Lconvertloc (loct, biype. frm, frmfam);
LOCATION *loci, *loc2;

BASETYPE btype;

FRAME *frm;

FRAMEFAMILY *frmfam;

This function returns the base type for location ’loc’. BFRM is returned if the
location is expressed in a frame, BFRMFAM is returned if the location is expressed
in a frame family. The functions LgetbaseF and LgetbaseFF retrieve the base
frame and frame family respectively of a location. frame or frame family bases.

btype = Lcheckbase (loc);

BASETYPE btype;

LOCATION *loc;

This function returns the base frame 'frm' for location 'loc’. The function
Lcheckbase determines the location’s base type.

frm = LgetbaseF (loc);

FRAME *frm; :

LOCATION *1loc;

This function returns the base frame family 'frmfam’ for location 'loc’. The
function Lcheckbase determines the location’s base type.

frmfam = LgetbaseFF (loc¢);

FRAMEFAMILY *frmfam;

LOCATION *1loc;

This function returns the ID number a location 'loc’ expressed in a global frame or
frame family. The function Lcheckbase determines the base type for a location.

id = Lgetbaseid (loc);

int id; :

LOCATION *loc;

This function returns the point set for location 'loc’.
pset = Lgetpointset (loc);
LPOINTSET *pset;

LOCATION *loc;

This function computes the distance between the locations ’loc1’ and 'loc2’.
Ldistance returns the minimum Euclidian distance between the two locations. For
points, this distance is measured from the point itself; for line segments, it is
measured from a point on the segment; for polygons, it is measured from an
interior or boundary point of the polygon or on; and for point sets, it is measured
from a point in the set. The minimum distance between intersecting locations is
zero.

dist = Ldistance (locl, loc2);

LOCATION *locl, *1loc2;

float dist;

This function computes the distance between between the two point locations
loc1’ and ’'loc2’. The two points are treated as three-dimensional (the z-

Lcentroid

Larea

Ldiameter

Lorientation

Lchull

Lbox

Loverlap

49

coordinate is meaningful). Ldistance3 is undefined for line segments, palygons,
and point scatters (a value of MAXFLOAT is returned).

dist = Ldistance3 (locl, loc2); '

LOCATION *locl, *loc2;

float dist;

This function computes the centroid of location ’loc1’. The centroid of a point is
the point itself. The centroid of a line segment is the midpoint. The centroid of a
polygon is its "center of mass". The centroid of a point set is the average of the
points in the set.

cent = Lcentroid (locl);
LOCATION *cent, *locl;

This function computes the area of location 'loc1’. The areas of a point and a line
segment are zero. The area of a polygon is the area enclosed by the perimeter.
The area of a point set is the area of the best-fitting ellipse.

area = lLarea (locl);

LOCATION *1ocl;

float area;

This function computes the diameter of location ’'loc1’. The diameter of a location
is the maximum distance between two points of the location.

diam = Ldiameter (locl);

LOCATION *1oci;

float diam;

This function computes the orientation of location 'loc1’. The orientation of a
location is the angle (in radians) of the location’s major axis to the positive x-axis.
Angles tending toward the positive y-axis are positive. The angles range from
-Pl/2 to Pl/2. The major axis of a point is undefined, hence an error value of
MAXFLOAT is returned. For line segments, the major axis is angle between the
segment and the x-axis. For polygons and point sets, the orientation is the angle
between the axis of the best-fitting ellipse and the x-axs.
orien = Lorientation (locl);

float orien;
LOCATION *loci;

This function computes the convex hull of location 'loc1’. The convex hull of a
point is the point itself. The hull of a line is the line itself. The hull of a polygon is
rigorously defined elsewhere. The hull of a point set is the smallest convex
polygon containing all of the points.

chull = Lchull (loci);

LOCATION *3loci, *chull;

This function computes the minimum bounding rectangle (MBR) of location ’loc1’.

box = Lbox (locl);
LOCATION *locl, *box;

This function returns TRUE if locations 'loct’ and 'loc2' overlap, i.e. it they
intersect; FALSE otherwise.

50

test = Loverlap (locl, loc2);
LOCATION *1o0cl, *1loc2;
int test;

4.2.8 Array Functions

Anewarray

Acopyarray

Afreearray

A?read

A?write

This function creates a new array of 'size’ elements of type ’type’ (where type is
AINTEGER, AFLOAT, ABOOLEAN, ASTRING, ALOCATION, AENUMERATED,
AUDT, or AARRAY). An array should NOT be written into more than one token,
spec, or array; instead, copies of the array should be used.

array = Anewarray (type, size);

ARRAY *array;

ARRAYTYPE type;

int size;

This function makes a copy of the array pointed to by ’'array!’ and returns a
pointer to the copy. This is the "correct” way to include an array in two tokens,
specs, arrays, etc.

array2 = Acopyarray (arrayl);

ARRAY *arrayl, *array2;

This function deallocates array 'array’. All array, UDT, and location elements are
also deleted. Arrays which have been written into tokens, specs, or arrays should
NOT be deleted with Ufreearray, as this operation will corrupt any structure
containing the array. ‘

Afreearray (array);
ARRAY *array;

This class of functions returns an array value with index ’index’ in the array 'array’.
The symbol '?' is a type designator, a single character (i, f, b, s, e, u, |, or a)
denoting the type of the array element returned (integer, floating point, boolean,
string, enumerated, UDT, location, or array respectively).

ival = Airead (array, index);
fval = Afread (array, index);
bval = Abread (array, index);
sval = Asread (array, index);
eval = Aeread (array, index);
uval = Auread (array, index);
1val = Alread (array, index);

aval = Aaread (array, index);
int ival, bval, eval, index;
float fval;

char *sval;

UDT *uval;

LOCATION *1val;

ARRAY *aval, *array;

This class of functions writes '?val’ into the element of array 'array’ with index
'index’. The symbol '?" is a type designator, a single character (i, f, b, s, e, u, |, or
a) denoting the type of the array element returned (integer, floating point,
boolean, string, enumerated, UDT, location, or array respectively).

51

Aiwrite (array, index, ival);
Afwrite (array, index, fval);
Abwrite (array, index, bval);
Aswrite (array, index, sval);
Aewrite (array, index, eval);
Auwrite (array, index, uval);
Alwrite (array, index, lval);
Aawrite (array, index, aval);
int ival, bval, eval, index;
float fval;

char *sval;

UDT *uval;

LOCATION *1val;

ARRAY *aval, *array;

Asizeof This function returns the size (in elements) of array 'array’.
size = Asizeof (array);
int size;
ARRAY *array;

Atypeof This function returns the type of array 'array’.
type = Atypeof (array);
ARRAYTYPE type;
ARRAY *array;

Aextend This function extends array 'array’ by 'increase’ elements.

Aextend (array, increase);
ARRAY *array;
int 1increase;

A?append This class of functions extends array 'array’ by one element and stores '?val’ in
this element. The symbol '?' is a type designator, a single character (i, f, b, s, e, u,
I, or a) denoting the type of '?val' (integer, floating point, boolean, string,
enumerated, UDT, location, or array respectively).

Aiappend (array, ival);
Afappend (array, fval);
Abappend (array, bval);
Asappend (array, sval);
Aeappend (array, eval);
Auappend (array, uval);
Alappend (array, lval);
Aaappend (array, aval);
int ival, bval, eval;
float fval;)
char *sval;

UDT *uval;

LOCATION *1vail;

ARRAY *aval;

A?member This class of functions returns a boolean value of TRUE if '?val’ is an element of
the array 'array’. The symbol '?' is a type designator, a single character (i, f, b, s,
e, u, |, or a) denoting the type of "?val' (integer, floating point, boolean, string,

Aintersection

Aunion

Aequal

Amax

Amin

Asort

52

enumerated, UDT, location, or array respectively). If *?val' is not a member of
‘array’, FALSE is returned.
test = Aimember (array, ival);

test = Afmember (array, fval);
test = Abmember (array, bval);
test = Asmember (array, sval);
test = Aemember (array, eval);
test = Aumember (array, uval);
test = Almember (array, lval);

test = Aamember (array, aval);
int test, ival, bval, eval;
float fval;

char *sval;

UDT *uval;

LOCATION *1val;

ARRAY *aval;

This function returns an array 'intersection’ which is the set intersection of arrays
‘array1’ and 'array2’. (Note: comment on arrays of arrays.)

intersection = Aintersection (arrayl, array?);
ARRAY *intersection, *arrayl, *array?2;

This function returns an array 'union’ which is the set union of arrays ’'array1’ and
'array?’. (Note: comment on arrays of arrays.)

union = Aunion (arrayl, array2);

ARRAY *union, *arrayl, *array2;

This function returns the boolean value TRUE if ‘array!’ and 'array2’ are equal,
that is, if 'array1’ includes every member of ‘array2’ and vice versa (set equality).
test = Aequal (arrayl, array2);
int test;
ARRAY *arrayl, *array2;

This function returns the lowest index of the maximum element of array ’array’.
This function is not defined over arrays of type location, UDT, and array.

index = Amax (array);

int index;

ARRAY *array;

This function returns the lowest index of the minimum element of array 'array’.
This function is not defined over arrays of type location, UDT, and array.

index = Amin (array);

int index;

ARRAY *array;

This function sorts the elements of ’array’ in ascending order and returns a
pointer to the sorted array. The original array remains unchanged. This function
is not defined over arrays of type location, UDT, and array.

sorted = Asort (array);
ARRAY *sorted, *array;

53

4.3 Specifications and Specification Lists

4.3.1 Specification Functions

Snewspec

Sfreespec

This function allocates a spec header node and points it to the spec node 'sn’. A
pointer to the spec header node is returned. The spec node 'sn’ is assumed to be
the root node of a spec tree.

sp = Snewspec (sn);

SPEC *sp;

SPECNODE *sn;

This function frees spec 'sn’. All spec nodes in the tree are also deleted, as well
as embedded array, UDT, and location constants. This function should not be
invoked on specs which are included in a spec list; otherwise havoc will result.-
Sfreespec (sp);. '
SPEC *sp;

4.3.2 Constant and Attribute Spec_Node Functions

S?const

Sattribute

Sarrelemattr

This class of functions converts constants '?val’ into spec nodes, where '? is a
single character (i, f, b,’s, e, u, |, or a) denoting the constant’s type (integer,
floating point, boolean, string, enumerated, UDT, or location respectively).

sn = Siconst (ival);
sn = Sfconst (fval);
sn = Sbconst (bval);
sn = Ssconst (sval);
sn = Seconst (eval);
sn = Suconst (uval);
sn = Slconst (1val);

sn = Saconst (aval);
SPECNODE *sn;

int ival, bval, eval;
float fval;

char *sval;

UDT *uval;

LOCATION *]val;

ARRAY *aval;

This function creates a spec node that refers to the attribute with id ’aid’.

sn = Sattribute (aid);
SPECNODE *sn;
int aid;

This function creates a spec node that refers to the array element with index
‘index’ in the attribute with id 'aid’. The referenced attribute must be of type array.
sn = Sarrelemattr (aid, index);
SPECNODE *sn;
int aid, index;

4.3.3 Boolean Spec Node Functions

Sand[n] These two functions build AND specnodes (boolean), that is, nodes that instructs
the BB manager to AND the input operands together. Sand takes two input
specnodes (also booleans), while Sandn takes 'n’ specnodes.

sn = Sand (snl, sn2);

sn = Sandn (n, snl, sn2, ... , snn);
SPECNODE *sn, *snl, *sn2, ..., *snn;
int n;
Sor[n] These two functions build OR specnodes (boolean), that is, nodes that instructs

the BB manager to OR the input operands together. Sor takes two input
specnodes (also booleans), while Sorn takes ’'n’ specnodes.
sn = Sor (snl, sn2);

sn = Sorn (n, snl, sn2, ... , snn);
SPECNODE *sn, *snl, *sn2, ..., *snn;
int n;
Snot This function builds a NOT spec node ’'sn’, which instructs the BB manager to
negate its operand 'sn1’ (a boolean). No excuses are given for this function’s

name.
sn = Snot (sn1l);
SPECNODE *sn, *snl;

4.3.4 Relational Spec Node Functions

Sequal This function builds a spec node 'sn’ (a boolean), instructing the BB manager to
test the equality of the input operands sn1 and sn2. The operands must be
floating point numbers, integers, booleans, enumerated scalars, or strings.

sn = Sequal (snl, sn2); '
SPECNODE *sn, *snl, *sn2;

Snequal This function builds a spec node ’sn’ (a boolean), instructing the BB manager to
test the inequality of the input operands sn1 and sn2. Specnodes sn1 and sn2
must hold data of the same type and must be floating point numbers, integers,
booleans, enumerated scalars, or strings.

sn = Snequal -(snl, sn2);
SPECNODE *sn, *snl, *sn2;

Sless[eq] These functions build a spec node ’sn’ (a boolean), instructing the BB manager to
test if sn1 is less than sn2 or if sn1 is less than or equal to sn2 for Sless and
Slesseq respectively. Specnodes sn1 and sn2 must be integers or floating point
numbers.
sn = Sless (snl, sn2);
sn = Slesseq (snl, sn2);
SPECNODE *sn, *snl1l, *sn2;

Sgreater[eq] These functions build a spec node 'sn’ (a boolean), instructing the BB manager to
test if sn1 is greater than sn2 or if sn1 is greater than or equal to sn2 for Sgreater
and Sgreatereq respectively. Specnodes sn1 and sn2 must bé integers or both
floating point numbers.

55

sn = Sgreater (snl, sn2);
sn = Sgreatereq (snl, sn2);
SPECNODE *sn, *snl, *sn2;

4.3.5 Arithmetic Spec Node Functions

Srange

Sadd[n]

Ssubtract

Smultiply[n]

Sdivide

This function builds a spec node ’'sn’ (a boolean), instructing the BB manager to
test if 'sn1’ lies between 'sn2' and ’sn3’ inclusively. Spec nodes sn1, sn2, and sn3
must be integers or fioating point numbers.

sn = Srange (snl, sn2, sn3);

SPECNODE *sn, *snl, *sn2, *sn3;

These two functions build an ADD spec node 'sn’ of type integer or floating point,
which instructs the BB manager to add the input operands together (also of type
integer or floating point). Sadd takes two operands, and Saddn takes 'n’.

sn = Sadd (sn1, sn2);

sn = Saddn (n, snl, sn2, ... , snn);

SPECNODE *sn, *snl, *sn2, ..., *snn;

This function builds a SUBTRACT sec node 'sn’ of type integer or floating point,
which instructs the BB manager to subtract sn2 from sn1 (also of type integer or
floating point).

sn = Ssubtract (sn1, sn2)

SPECNODE *sn, *snl, *sn2;

These two functions build an MULTIPLY spec node 'sn’ of type integer or floating
point, which instructs the BB manager to multiply the input operands together
(also of type integer or-floating point). Smultiply takes two operands, and
Smultiplyn takes 'n’.) : ’

sn = Smultiply (sni, sn2);

sn = Smulitiplyn {(n, snil, sn2, ... , snn);

SPECNODE *sn, *snl, *sn2, ..., *snn;

This function builds a DIVIDE spec node ’'sn’ of type integer or floating point,
which instructs the BB manager to divide sn1 by sn2 (also of type integer or
floating point). Integer division is truncated.

sn = Sdivide (snl, sn2)

SPECNODE *sn, *snl, *sn2;

4.3.6 String Spec Node Functions

Ssubstring

Ssregexp

This tunction builds a SUBSTRING spec node ’'sn’ of type boolean, which
instructs the BB manager to test whether string spec node sn1 is a substring of
string spec node sn2.

sn = Ssubstring (sn1, sn2);
SPECNODE *sn, *snl, *sn2;

This function builds a REGULAR EXPRESSION SEARCH spec node 'sn’ of type
boolean, which instructs the BB manager to test whether string spec node 'sn1’

56

denotes a regular expression matching string spec node ’sn2’. See recomp in
section 3 of the UNIX manual.

sn = Ssregexp (snl, sn2);
SPECNODE *sn, *snl, *sp2;

4.3.7 Location Spec Node Functions

Sdistance

Sdistance3

Scentroid

Sarea

Sdiameter

Sorientation

This function builds a DISTANCE spec node 'sn’ of type float, which instructs the
BB manager to compute the minimum distance between location spec nodes 'sn1’
and ’sn2’. For points, this distance is measured from the point itself; for line
segments, it is measured from a point on the segment; for polygons, it is measured
from an interior or boundary point of the polygon or on; and for point sets, it is
measured from a point in the set. The minimum distance between intersecting -
locations is zero.

sn = Sdistance (snl, sn2);

SPECNODE *sn, *snl, *sn2;

This function builds a DISTANCES spec node 'sn’ of type float, which instructs the
BB Manager to compute the minimum Euclidian distance between two point
location spec nodes 'sn1’ and 'sn2’. The two points are treated as three-
dimensional (the z-coordinate is meaningful). Sdistance3 is undefined for line
segments, polygons, and point scatters (a value of MAXFLOAT is returned).

sn = Sdistance3d (snl, sn2);
SPECNODE *sn, *snl, *sn2;

This tunction builds a CENTROID spec node 'sn’ of type location, which instructs
the BB manager to compute the centroid of location spec node 'sn1’. The
centroid of a point is the point itself. The centroid of a line segment is the
midpoint. The centroid of a polygon is its "center of mass". The centroid of a
point set is the average of the points in the set.

sn = Scentroid (snl);

SPECNODE *sn, *sni;

This function builds an AREA spec node 'sn’ of type float, which instructs the BB
manager to compute the area of location spec node 'sn1’. The areas of a point
and a line segment are zero. The area of a polygon is the area enclosed by the
perimeter. The area of a point set is the area of the best-fitting ellipse.

sn = Sarea (snl);

SPECNODE *sn, *snl;

This function builds an DIAMETER spec node 'sn’ of type float, which instructs the
BB manager to compute the diameter of location spec node 'sn1’. The diameter
of a location is the maximum distance between two points of the location.

sn = Sdiameter (snl);
SPECNODE *sn, *sni;

This function builds an ORIENTATION spec node 'sn’ of type float, which instructs .
the BB manager to compute the orientation of location spec node 'sn1’. The
orientation of a location is the angle (in radians) of the location’s major axis to the

57

positive x-axis. Angles tending toward the positive y-axis are positive. The angles
range from -P1/2 to PI/2. The major axis of a point is undefined, hence an error
value of MAXFLOAT is returned. For line segments, the major axis is angle
between the segment and the x-axis. For polygons and point sets, the orientation
is the angle between the axis of the best-fitting ellipse and the x-axs.

sn = Sorientation (snl);

SPECNODE *sn, *snl;

Schull This function builds a CONVEX HULL spec node 'sn’ of type location, which
instructs the BB manager to compute the convex hull of location spec node 'sn1’.
The convex hull of a point is the point itself. The hull of a line is the line itself. The
hull of a polygon is rigorously defined elsewhere. The hull of a point set is the
smallest convex polygon containing all of the points.
sn = Schull (snl);
SPECNODE *sn, *snil;

Sbox This function builds a BOX spec node 'sn’ of type location, which instructs the BB
manager to compute the minimum bounding rectangle (MBR) of location spec
node ’'sn1’.

sn = Sbox (snl);
SPECNODE *sn, *sn1l;

Soverlap This function builds an OVERLAP spec node 'sn’ of type boolean, which instructs
the BB manager to test if location spec nodes 'sn1’ and 'sn2’ overlap, i.e. if they
intersect.

sn = Soverlap (snl, sn2);
SPECNODE *sn, *snl1, *sn2;

4.3.8 Array Spec Node Functions

Smember This function builds a MEMBER spec node 'sn’, which instructs the BB manager
to test if data spec node 'sn2’ is a member of the array spec node 'sn1’,

sn = Smember (snl, sn2);
SPECNODE *sn, *snl, *sn2);

Sintersection This function builds an INTERSECTION spec node ’sn’, which instructs the BB
manager to return the intersection of array spec nodes 'sn1’ and.'sn2’,

sn = Sintersection (sn1l, sn2);
SPECNODE *sn, *snl, *sn2;

Sunion This function builds an UNION spec node ’sn’, which instructs the BB manager to
return the union of array spec nodes 'sn1’ and 'sn2’.

sn = Sunion (snl, sn2);
SPECNODE *sn, *snl, *sn2;

Saequal This function builds an AEQUAL spec node 'sn’, which instructs the BB manager
to test if array spec nodes 'sn1’ and 'sn2’ are equal (contain the same elements
regardiess of order).

Smax

Smin

58

sn = Saequal (snl, sn2);
SPECNODE *sn, *snl, *sn2;

This function builds a MAX spec node 'sn’, which instructs the BB manager to
return the maximum element in array spec node 'sn1’. This function is not defined
over data of type location, UDF, and array.

sn = Smax (snl);

SPECNODE *sn, *snil;

This function builds a MIN spec node ’sn’, which instructs the BB manager to
return the minumum element in array spec node ’sn1’. This function is not defined
over data of type location, UDF, and array.

sn = Smin (snl);

SPECNODE *sn, *snil;

4.3.9 Slot Functions

Sindirect

Spointer

This function creates an indirect spec node that points to another spec node. By
changing the value of this pointer (see Spointer), part of a spec tree can be
changed without rebuilding the entire tree.

sn = Sindirect ();

SPECNODE *sn;

This function loads an indirect spec node ’sn1’ (see Sindirect) with the address of
a spec node 'sn2’.

Spointer (snl, sn2);

SPECNODE *sn1, *snZ;

4.3.10 User-defined Functions

functions.c

UDF name table

All user-defined functions (UDF’s) are defined in this file. It is compiled separately
and then linked with the BB manager. The file has the following structure:
#include <functions.h>
UDF name table
UDF detinitions

See Appendix Ill for functions.h.

This table is a data structure listing the names, addresses, and number of
arguments for each function defined in the file. A macro facility is provided for
building the table. The table has the following form:

BEGINFUNCLIST

FUNCTION(funcnamel, funcl,numberofargs1)

FUNCTION(funcname2, func2,numberofargs2)

FUNCTION(funcnamen, funcn,numberofargsn)

ENDFUNCLIST
where 'funcname’ is a string for a function’s name, ’func’ is the function's
address, and 'numberofargs’ is the number of arguments to the function as shown
below: ' :

59

char *funcnamel, *funcname2, ..., *funcnamen;
void (*func1l)(), (*func2)(), ..., (*funcn)();
int numberofargsl, numberofargs2, ..., numberofargsn;

Every UDF defined in the file must have a FUNCTION entry in the table.

UDF definitions This block contains all of the UDF definitions. Each definition has the following

form:

SPECNODE *function (numofargs, arguments)

int numofargs;

SPECNODE **arguments;

{ /* body of function */ }
Upon invocation, the BB manager passes to the function an integer (numofargs)
denoting the number of arguments and a pointer (arguments) to an array of
argument pointers. The arguments to the function must be specnodes. The
function must return a specnode. See Appendix Il for details.

Sudf This function builds a spec node for invoking the user-defined function with id
'fid’. The integer 'n’ indicates the number of input parameters to the user-defined
function, and 'sn1’, 'sn2’, ..., ’snn’ are spec nodes for these parameters.

sn = Sudf (fid, n, sni, sn2, ... , snn);
SPECNODE *sn, *snl, *sn2, ... , *snn;

int fid, n;

4.3.11 Specification List Functions -

Snewlist This function allocates a new spec list with id ’slid’ and returns a pointer to it in
'sl’. : .
s1 = Snewlist (slid);
SPECLIST *s1; i
int slid;

Saddspec This function adds spec 'sp’ to spec list 'sl’ with spec id 'spid’ and locking option
'lg’. The locking option may be BBLOCK or BBNOLOCK.
Saddspec (s1, sp, spid, 1q);
SPECLIST *st;
SPEC *sp;
int spid;
BBLOCKOPT 1q;

Sfreelist This function frees the spec list pointed to by 'sl'. All specs in the list are also
deleted.

Sfreelist (s1);
SPECLIST *s1;

4.4 BB Functions

4.4.1 Macro for Recovering ID Numbers

Macro Usage - Macros are provided for building a data structure for mapping identifiers in
template.init and functions.c to ids. Ids must be declared and recovered before
invoking most other functions in the BB software package. Modules using the
macro facility must have the following structure:

1. ID declarations
2. Macro block |
3. BBinit()

4. Module body

ID declarations IDs are declared as integers as follows:
int idl, idz, ..., idn;

Macro block This block contains all macros for binding identifier names to ids. It has the
following structure:
BEGINIDLIST

<macrol>
<macro2>

<macron>
ENDIDLIST
where <macro1-n> can be the macros BINDTOKENTYPEID, BINDLOCALATTRID,

BINDGLOBALATTRID,BINDINTERNALATTRID, BINDUDFID, BINDUDTID,
BINDENUMTYPEID, or BINDSCALARID.

BINDTOKENTYPEID
This macro binds token type name ’ttname’ to id ’ttid’. The macro has the
following syntax:
BINDTOKENTYPEID(ttname, ttid)
char *ttname;
int ttid;

BINDLOCALATTRID
This macro binds local attribute name 'atname’ in the token type with id 'ttid’ to
the attribute id 'aid’. The macro has the following syntax:
BINDLOCALATTRID(ttid,atname,aid)
char *atname;
int ttid, aid;

BINDGLOBALATTRID
This macro binds global attribute name 'atname’ to the attribute id 'aid’. The
macro has the following syntax;

61

BINDGLOBALATTRID(atname,aid)
char *atname;
int aid;

BINDINTERNALATTRID
This macro binds internal attribute name 'atname’ to the attribute id ’aid’. The
macro has the following syntax:
BINDINTERNALATTRID(atname,aid)
char *atname;
int aid;

BINDUDFID This macro binds the user-defined function (UDF) name 'fname’ to the id 'fid’. The
macro has the following syntax:
BINDUDFID(fname,fid)
char *fpame;
int fid;

BINDUDTID This macro binds the user-defined type (UDT) name 'uname’ to the id 'uid’. The
macro has the following syntax:
BINDUDTID(uname,uid)
char *uname;
int uid;

BINDENUMTYPEID
This macro binds the enumerated type name ’etname’ to the id 'etid’. The macro
has the following syntax:
BINDENUMTYPEID(etname,etid)
char *etname;
int etid;

BINDSCALARID This macro binds the scalar name 'sname’ in the enumerated type with id 'etid’ to
the id 'sid’. If 'etid’ is TTYPE, the scalar 'sname’ is a token type name. The macro
has the following syntax:

BINDSCALARID(etid,sname,sid)
char *sname;
int etid,sid; .

4.4.2 Function for Initialization

BBinit This routine establishes communication with the BB manager and binds ids to
identifiers. BBinit must be called before any routines that require id numbers. The
syntax is:)

BBinit ();

62

4.4.3 Functions for Sending and Cancelling Spec Lists

BBsendstandinglist

This function sends the standing spec list 'sl’ to the BB manager. The function
call does not block. Whenever a token is inserted into the blackboard or when an
existing token is uniocked that matches ’sI' the function 'func’ is invoked to
process the token. Standing spec lists remain active in the BB after matching a
token. The syntax is:

BBsendstandingiist (s, func);

SPECLIST *s1;

void (*func) ();
The tunction should be declared as:

func (t, sid, s1id)

TOKEN *t;

int sid, slid; {

/* Body of function */

}

where 't’ is a token matching the spec with id 'sid’ from the spec list with id 'slid’.

BBsendoneshotlist

This function sends the one-shot spec list 'slI’ to the BB manager. If 'wo’ is
BBNOWAIT, the calls returns whether the spec list matches an existing, uniocked
token or not; if 'wo’ is BBWAIT, the call blocks until a token is deposited or until an
existing one is unlocked that matches the spec list. In both cases, the one-shot
spec list is deleted by the BB manager. Matched tokens are deposited in the
token queue. The syntax is:

BBsendoneshotlist(sl, wo);

SPECLIST *s1; .

BBWAITOPT wo;

BBcancelspeclist

This function instructs the BB manager to delete the spec list with id 'spid’. The
syntax is: ‘ :
BBcancelspeclist (slid);
int slid;

4.4.4 Functions for Getting and Putting Tokens

BBgettoken

BBputtoken

This function recovers a token from the token queue. Tokens matching one-shot
spec lists are deposited in this queue. If the queue is empty, NULL is returned.
The pointers 'ptrslid’ and 'ptrspid’ provide the ids of the spec list and spec within
the spec list respectively that matched the token. The syntax is:

t = BBgettoken (ptrslid, ptrspid);

TOKEN *t;

int *ptrslid, *ptrspid;

This function deposits a local token 't’ into the BB database. A unique id number,
assigned to the token by the BB manager, is returned by the function. The
internal attributes of the local token are not updated. The syntax is:

63

id = BBputtoken (t);
TOKEN *t; '
int id;

4.4.5 Functions for Accessing Tokens by ID Number

BBgetidtoken

BBreplacetoken

BBunlocktoken

BBdeletetoken

This function returns the token with id number ’id' from the BB database. If'lq’ is
BBLOCK, the BB manager locks the token (BBNOLOCK leaves the token
unlocked). BBGONE is returned if the token has been deleted, and
BBPROTECTED is returned if a lock is requested and the token is already locked
by another module; otherwise, BBSUCCESS is returned. The syntax is:

t = BBgetidtoken (id, 1q, &status);

TOKEN *t;

int id;

BBLOCKOPT 1q; .. .

BBRESULT status;

This function sends the local token 't’ to the BB, replacing the token with the same
id number. Before a global token can be replaced, it must be retrieved with
BBgetidtoken or BBgettoken. The token is unlocked. BBGONE is returned if the
id fails to match an existing token, BBPROTECTED is returned if the module did
not have the token locked, and BBSUCCESS is returned if the operation
succeeded. The syntax is:

b = BBreplacetoken (t);

TOKEN *t; - ‘

BBRESULT b;

This function unlocks the token in the BB with id number 'id’. BBGONE is
returned if the token does not exist, BBPROTECTED is returned if the module did
not have the token locked, and BBSUCCESS is returned if the operation
succeeded. The syntax is:

b = BBunlocktoken (tid);

int tid;

BBRESULT b;

This function deletes the token in the BB with id number 'id’. BBGONE is returned
if the token does not exist, BBPROTECTED is returned if the module did not have
the token locked, and BBSUCCESS is returned if the operation succeeded. The
syntax is:

b = BBdeletetoken (tid);

int tid;

BBRESULT b;

4.5 Position Correction Functions in the Blackboard

4.5.1 World Map Based Corrections

BBcorrect3

BBcorrect2

BBcorrect1

This function corrects the vehicle’s position to three degrees of freedom relative
to the world map at time 't’. The parameters 'x’ and 'y’ give the translation from
the origin of the world frame, and ’'phi’ is the orientation measured counter
clockwise from the positive x-axis of the world frame.

BBcorrect3d (t, x, y, phi);

int t;

float x, y, phi;

This function corrects the vehicle's position to two dear=~s of freedom relative to
the world map at time 't’. The vehicle is constrained to li.: on the line defined by 'r’
and 'th’, where 'r’ is the minimum distance to the line and 'th’ is the angle between
'r’ and the positive x-axis measured counterclockwise. The vehicle’s orientation is
set by 'phi’. The LMB corrects the position by straightening the vehicle’s path
since the last three-degree correction and intersecting it with the given line.

BBcorrect2 (t, r, th, phi);

int t;

float r, th, phi;

This function corrects the vehicle’s position to degrees of freedom relative to the
world map at time 't". The vehicle's orientation is changed to 'phi’ measured
counterclockwise from the positive x-axis. The x and y parameters are left
unchanged.

BBcorrectl (t, phi);

int t;

float phi;

4.5.2 Vehicle Based Correction

BBvehcorrect3

BBvehcorrect2

BBvehcorrect1

This function corrects the vehicle’s position at time 't2’ to three degrees of
freedom relative to the vehicle at time 't1’. The parameters 'x’ and 'y’ give the
translation from the origin of the world frame, and 'phi’ is the orientation
measured counter clockwise from the positive x-axis of the vehicle frame.

BBvehcorrect3 (ti, t2, x, y, phi);

int t1, t2;

float x, y, phi;

This function corrects the vehicle’s position at time 't2’ to two degrees of freedom
relative to the vehicle at time 't1’. The vehicle is constrained to lie on the line
defined by '’ and 'th’, where 'r’ is the minimum distance to the line and 'th’ is the
angle between 'r’ and the positive x-axis measured counterclockwise. The
vehicle’s orientation is set by ’'phi’. The LMB corrects the position by
straightening the vehicle’s path since the last three-degree correction and
intersecting it with the given line.

BBvehcorrect2 (t1, t2, r, th, phi);

int t1, t2;

float r, th, phi;

This function corrects the vehicle’s position at time 't2' to degrees of freedom

65

relative to the vehicle at time 't1’. The vehicle’s orientation is changed to 'phi’
measured counterclockwise from the positive x-axis. The x and y parameters are
left unchanged.

BBvehcorrectl (t1, t2, phi);

int t1, t2;

float phi;

BBsetdistance This function sets the distance travelled by the vehicle from time 't1’ to time 't2’ to
'dist’. Exactly how this measurement will be incorporated into the model is not yet
specified.

BBsetdistance(tl, t2, dist);
int t1, t2;
float dist;

4.5.3 Dead Reckoning Command

BBmotionparamsThis function notifies the LMB that the vehicle's course has been altered at time
't'. The parameters are 'l -speed’ for speed of the left wheels, 'r-speed’ for
speed of the right wheels, and 'width’ for the width of the vehicle (length of axle).

BBmotionparams (t, 1_speed, r_speed, width)
int t; ‘
float 1_speed, r_speed, width;

4.5.4 Status Command

BBpositionest This function returns an estimate of the vehicle’s position with respect to the

world coordinate frame at time 't’, that is, the translation.from the world frame in
'x’ and 'y’, and the orientation 'phi’ measured counter clockwise from the positive
x-axis of the world frame. If the position of the vehicle with respect to the world is
unknown, FALSE is returned; otherwise, TRUE is returned.

BBpositionest (t, &x, &y, &phi);

int t;

float *x, *y, *phi;

4.6 Global Time Function

BBglobailtime This function returns the global time, that is, the time of the LMB.

t = BBglobaltime ():
int t;

5. Future Versions

The following capabilities and support tools will be added to the blackboard software package in

future releases:

e Lisp interface: Module writers are constrained to using the C programming language.
Future versions will include a module interface package for Lisp.

e Debugging aids: No mechanism is provided for testing the software short of "firing up"
the entire system. Future versions will include an TTY-based module emulator.

67

I. Include File for Modules

/*****#t*********t*#****#*#*****#***‘*******#********#****##*
*

* File: module.h
*
#*#*#******##*#*******t*#*#*#t**t***#*####****#t'*t*###t/

/* Define TRUE and FALSE */

#define TRUE 1
#define FALSE 0
typedef enum {

BBLOCK,

BBNOLOCK

} BBLOCKOPT;

typedef enum {
BBGONE,
BBPROTECTED,
BBSUCCESS

} BBRESULT;

typedef enum {
BBWAIT,
BBNOWAIT
} BBWAITOPT;

/t**'t**t*##.‘**‘#tttt‘.#!l‘***#t*#*ti&*#*‘#*‘**“*t##‘*#*##‘
®

* Pose data type
[}

##*t**tt##t**t##t‘tt#‘#ttt#**t"ttt*ttt‘#*##t#‘ttt#“#*tt“t/

struct POSEHEADER {
float matrix[4][4]:
}i

typedef struct POSEHEADER POSE;

/t*t#t*#t###*#*t‘t##"‘*‘*t#l#t##tl#t#‘t“*t*‘**#tt*t‘**‘#“l

POSE *pose;

int col, row;

float val;

Routines for handling poses:

pose = Pnewpose (); allocates new pose
val = Preadelem (pose, row, col);

Pwriteelem (pose, row, col, val);

@ # & % B ® O B K * N B O

Pfreepose (pose); " de-allocates pose

reads the pose value in row and col

writes the pose value into row and col

*
EEEERERERKRXEEEEREEERERER R R AR R R R ERRRRE KRR KRR R R R R R RR XK/

POSE *Pnewpose ();
float Preadelem ();

[EFERREEEEERREEFRREEREEERRERRERERRERERREBR AR AR EARERKERREREE R XX
[

* Frame family data type

*®
*t*tt*#*t####t*t#tt***‘#ttt***tt##‘##**t#t*t#**********#**##/

typedef enum {
BFRM,
BFRMFAM
} BASETYPE;

typedef enum {
FFGLOBAL,
FFLOCAL,
FFVEHICLE
} FFTYPE;

struct FFPARAMBLKHEADER {

int FFtime; /* time value */

POSE *FFpose; /* pose value */

struct FFPARAMBLKHEADER *FFnextblk; /* pointer to next
param block */

}i _
typedef struct FFPARAMBLKHEADER FFPARAMBLK; .
struct FFPARAMLISTHEADER { C
FFPARAMBLK *FFfirstblk, /* pointer to first param block */
FFlastblk; / pointer to last param block */

int FFsize; /* number of blocks in linked list */

}:
typedef struct FFPARAMLISTHEADER FFPARAMLIST;

typedef enum {
FFNOTIME,
FFTIME

} FFTIMEARG;

struct FFHEADER {

BASETYPE FFbasetype; /* base frame or frame family */
union {

struct FRAMEHEADER *FFbasefrm; /* if base frame */

struct FFHEADER *FFbasefrmfam; /* if base frame family */
} FFbase;
FFTYPE FFnewtype; /* new frame family type */
union {

struct {

POSE (*FFtransform)(); /* function to transform

: coordinates */
int FFnumofparms; /* number of parms to trans */
FFTIMEARG FFtimearg; /* flag indicating time
as .parm */
} FFlocalifrmfam;
. struct {
int FFframefamid; /* gliobal id */
FFPARAMLIST *FFparamlist; /* pointer to list of
<time><pose> pairs */
} FFglobalfrmfam;
} FFdata;
int FFmark; /* Mark for internal usage */

}:
typedef struct FFHEADER FRAMEFAMILY;

/***##***t#*t****##‘*t*****##*#*#**’**#*******#*t##t*t****##*#

FRAMEFAMILY *bfrmfam, *frmfam, *frmfami, *frmfam2;
FFPARAMLIST *plist;

FRAME *bfrm;

POSE (*transform) (), *ppose;

int numofpars, ptime, id;

BBRESULT status;

BBLOCKOPT 1lock;

Routines for hand]ing.framé families:

plist = FFmakeparamlist ();:
allocates a parameter l1ist plist.
FFaddtoparamlist (plist, ppose, ptime);
: adds the pair <ptime><ppose> to
parameter list plist.
FFfreeparamlist (plist);
frees parameter list plist.

frmfam = FFmakeglobalfromFF (bfrmfam, plist);
makes a global frame family frmfam with base
frame family bfrmfam and a parameter list of
plist. The frame family bfrmfam must not be
local. The new frame family is sent to the
BB and frmfam refers to it locally.
Whenever frmfam is accessed, a new copy
is recovered from the BB.

frmfam = FFmakeglobalfromF (bfrm, plist);
makes a global frame family frmfam with
base frame bfrm and a param list of plist
The frame bfrm must be global. The new
frame family is sent to the BB and
frmfam refers to it locally.
Whenever frmfam is accessed, a new copy
is recovered from the BB.

frmfam = FFmakelocalfromFF (bfrmfam, transform, numofpars);

creates a local frame family frmfam with
base frame family bfrmfam, and a transform
function transform which takes numofpars

® & & % B B O % B % O O O N OO O B BB N B EEOR KRR REE N BN RN

LR JEE 2NN JEN JER BRY JN I BN I B BN BN B BN B EE ZE K B Y S TR R 2E R Y I R T I NN SR TR YR JEE BN SRR R N IR IR I N AN 25 2R R BE K IR BN I

70

parameters.

frmfam = FFmakelocalfromF (bfrm, transform, numofpars);
creates a local frame family frmfam with
base frame bfrm, and a transform function

. transform which takes numofpars parameters

id = FFgetglobalid (frmfam); v

retrieves the ID number id from globa1
v frame family frmfam.

frmfam = FFgetglobalfromid (femfam, lock, status);
retrieves the global frame fam11y with ID
number id and stores it in frmfam. If
Tock is BBLOCK, the frame family is locked;
if it’s BBNOLOCK, the frame family is not
locked. BBPROTECTED is returned in status
the frame family 1is already locked,
otherwise BBSUCCESS.

FFgetglobalupdate (frmfam, lock);
recovers the global frame fam11y frmfam
from the BB. If lock is BBLOCK, the
frame family is locked and no other
module may change it. If Tock is BBNOLOCK,
the frame family is read but not locked.
BBPROTECTED is returned if the frame family
is already locked, otherwise BBSUCCESS
is returned.

FFputglobal (frmfam);
writes an updated version of global frame
family frmfam to the BB and unlocks it.
BBPROTECTED is returned if the frame family
is locked by another module, otherwise
BBSUCCESS is returned.

FFunlockglobal (frmfam); _
unlocks the global frame family femfam.
BBPROTECTED is returned if the frame family
is locked by another module, otherwise
BBSUCCESS is returned.

FFwritebaseFF (frmfaml, frmfam2);
loads the base frame fam11y in frmfaml
with frmfam2. The base frame family
is assumed to have been NULLFF.

FFwritebaseF (frmfam, bfrm);
loads the base frame family in frmfam
with global frame bfrm.. The base frame
family is assumed to have been NULLFF.

FFcheckbase {frmfam); returns BFRM if base in frmfam
is a frame or BFRMFAM if a frame
family.
FFreadbaseFF (frmfam); returns base frame family of frmfam.
FFreadbaseF (frmfam); returns base frame of frmfam.

FFwriteparamlist (frmfam, plist);
writes parameter 1ist plist into frame
family frmfam.

FFreadparamlist (frmfam);
returns the parameter 1ist for frmfam.

71

*****#*****“*#t#***tt##**##***#**##***%*****###*t****t#***#/

FRAMEFAMILY *FFmakegiobalfromfFF (), *FFmakeglobalfromF (),
*FFmakelocalfromFF (), *FFmakelocalfromF (),
*FfreadbaseFF (), *FFgetglobalfromid ();

FFPARAMLIST *FFmakeparamlist (), *FFreadparamlist ();

BBRESULT FFgetglobalupdate (), FFputgiobal (), FFunlockglobal ();

struct FRAMEHEADER *FFreadbaseF ();

BASETYPE FFcheckbase ();

/* Declare the system frame family */
extern FRAMEFAMILY *VEHICLEFF;

/#*##*#####*ttt*ttt##tt**t**##t**#t**t#**t#####*#*t##*#‘t#t##
*

* Frame data type

[
###t#**t*t###t****tttt.#t***#t**t#**##t**t*****#*t#***“‘*##/

typedef enum { : : '
FSELECTFRAME, /* frame made by selecting from family */
FPOSEFRAME /* frame made by specifying a pose */

} FTRANSTYPE;

typedef enum {
FGLOBAL,
FLOCAL,
FWORLD,
FNULL

} FTYPE;

struct FRAMEHEADER { - . i
BASETYPE Fbasetype; /* base frame or frame family */
union {
struct FRAMEHEADER *Fbasefrm; /* if base frame */
FRAMEFAMILY *Fbasefrmfam; /* if base frame family */
} Fbase; E
FTYPE Fnewtype; /* new frame type */
int Ffrmid; /* frame id if global */
FTRANSTYPE Ftranstype; /* transform type */
union {
POSE *Fpose; /* transform from base frame or family */
struct { :
int Fnumofpars; /* number of parameters to
1+ transforms */
float *Fparameters; /* pointer to a block of
: parameters */
FFTIMEARG Ftimearg; /* indicates a time value
was specified */
int Ftimevalue; /* the time value */
} Fselectframe;
} Fdata;
int Fmark; /* mark for internal usage */

72

typedef struct FRAMEHEADER FRAME;

/******#******#***#####*#tt‘**#####***‘**#l********#**###“t‘

FRAME *frm, *bfrm, *frml, *frm2;
FRAMEFAMILY *bfrmfam;

POSE *ppose;

FFTIME time_arg;

BBRESULT status;

BBLOCKOPT lock;

int numofpars, id, time;

float pari, par2, ...,.parn;

Routines for handling frames:

FselectlocalfromFF (bfrmfam, time_arg, time, numofpars,

frm =
parl,” par2; ..., parn);
creates a frame frm by evaluvating the
numofpars parl, par2, ..., parn and time

in local base frame family bfrmfam.

frm = Fse]ectg]oba1fromFF (bfrmfam, time);
creates a frame frm by evaluating the
time argument in global base frame family
bfrmfam.

frm = FmakeglobalfromFF (bfrmfam, ppose);
makes a global frame frm with base frame
family bfrmfam and a pose of ppose. The
frame family bfrmfam must not be local.
The new frame is sent to the BB and frm
refers to it locally.

frm = Fmakeg1oba1fromF (bfrm, ppose);
makes a global frame frm with base frame
bfrm and a pose of ppose. The frame
bfrm must be global. The new frame is sent
to. the BB and frm refers to it locally.

frm = FmakelocalfromFF (bfrmfam, ppose);
makes a local frame frm with base frame
family bfrmfam and a pose of ppose.

frm = FmakelocalfromF (bfrm, ppose);
makes a local frame frm with base frame
bfrm and a pose of ppose.

id = Fgetglobalid (frm);
retrieves the ID number id from global
frame frm.

frmfam = Fgetglobalfromid (frm, Tock, status);
retrieves the global frame with ID
number id and stores it in frm. If
lock is BBLOCK, the frame is locked;
if it’s BBNOLOCK, the frame is not
Tocked. BBPROTECTED is returned in status
the frame is already Tlocked,
otherwise BBSUCCESS.

Fgetglobalupdate (frm, lock);
recovers the global frame frm from the
BB. If lock is BBLOCK, frm is locked.

L NN B SN B RN Y BN BEE SN BN JEE NN NEE JEE BN BN NEN NN NN NN BN NN NN BEF NN BER I JEY NN NEE SRR K BN BEN REE BN NEN K CBEE BN NEE N IR BN 2R 2.2 2 R RN 4

73

If lock is BBNOLOCK, the frm is not locked.
BBPROTECTED is returned if the frame is
already locked, otherwise BBSUCCESS is
returned.

Fputglobal (frm); . writes an updated version of global frame
frm to the BB and unlocks it. BBPROTECTED
is returned if the frame is locked by
another module, otherwise BBSUCCESS is
returned. _

Funlockglobal (frm); unlocks the global frame frm. BBFROTECTED
is returned if the frame is locked by
another module, otherwise BBSUCCESS is
returned.

FwritebaseFF (frml, frmfam);
loads the base frame family in frml
with frmfam. The base frame family
is assumed to have been NULLFF.

FwritebaseF (frmi, frm2);
loads the base frame in frml with frm2.
The base frame is assumed to have been

NULLF.
Fcheckbase (frm); returns BFRM if the base of frm is

a frame and BFRMFAM if it's a family.
FreadbaseFF (frm); returns the base frame family of frm.
FreadbasefF (frm); returns the base frame of frm.

Fwritepose (frm, ppose);
writes pose ppose into frame frm.

Freadpose (frm); reads the pose from frame frm.

Fconvertfrm (frml, pposel, frm2);
returns the pose from frame frm2 equivalent
to pose pposel from frame frml.

*t.####tt#**#**t#‘tt‘##tt‘ttl#t#ttt.#t**tt#t‘*#t“‘t####.“/

FRAME *FselectlocaifromFF (), *FselectglobalfromFF (),
*FmakeglobalfromfFF (), *FmakeglobalifromF (),
*FmakelocalfromFF (), *FmakelocalfromF (), *FreadbasefF (),
*Fgetglobalfromid ();

FRAMEFAMILY *FreadbaseFF ();

FTRANSTYPE Freadtranstype (): :

POSE *Freadpose (), *Fconvertfrm ();

BBRESULT Fgetglobalupdate (), Fputglobalupdate (), Funlockglobal ()

BASETYPE Fcheckbase ();) .

int Freadtime ();

/* Declare the system frames */
extern FRAME *WORLDF, *NULLF;

/‘ttt*#.#tt#t*#tt#t.t##tttt#ttt‘.‘t“t‘*‘#t‘t.t#tt.##.“.t“‘
L

. Location data type
*®

*#‘##**#‘#‘##‘#t##t‘ttt#t#‘#tt#‘t###t*tt‘t.t*‘#*##"t#“.t#‘/

typedef enum {

74

LPOINT,
LLINESEG,
LPOLYGON,
LSCATTER
} LPOINTSETTYPE;

struct LPOINTCOORS {
float Lcoors[4]; /* Column vector of x,y,z,w values */
}i

typedef struct LPOINTCOORS LSPOINT;

struct LPOINTSETHEADER {
LPOINTSETTYPE 1type; /* type of location */
int Lsize; /* number of points in location */
LSPOINT *Lpoints; /* pointer to block of points */

}: A
typedef struct LPOINTSETHEADER LPOINTSET;

struct LOCATIONHEADER {
BASETYPE Lbasetype; /* base is frame or frame family */
union {
FRAME *_Lframe; /* if frame */
FRAMEFAMILY *_{framefam; /* if frame family */
} Lbase; ‘
LPOINTSET *Lpointset; /* point set */

}:
typedef struct LOCATIONHEADER- LOCATION;

/#t"#'*‘##l**##.#**#t‘.#tttt#*tt**"_*'tt‘.ttt#**#‘t*#‘!#‘.#‘

LPOINTSET *pset;

FFTYPE btype;

FRAME *frm;

FRAMEFAMILY *frmfam; -

LOCATION *loc, *locl, *loc2;
LPOINTSETTYPE 1type;

float x, y, z, x1, y1, z1, x2, y2, 22;
int 1size, test, id;

Routines for handling point sets and locations:

pset = Lnewpointset (ltype, lsize);
creates a new point set pset of type
ltype and maximum size l1size.
Lreadpoint (pset, i, &x, &y, &z);
reads the point x,y,z from the ith point
in point set pset
Lwritepoint (pset, i, x, y, z);
adds the point x,y,z to the ith point
in point set pset
Lpointsettype (pset); returns type of point set pset
Lpointsetsize (pset); returns size of point set pset

0 # & 0 O O B B N O B O B BN ®F B R P NS

75

* Lfreepointset (pset); de-allocates the point set pset.

* pset = Lpoint (x, y, 2); .

* creates a point set of type LPOINT

* and stores the point x,y,z in it.

* pset = Llineseg (x1, yl1, z1, x2, y2, z2);

* ' creates a point set of type LLINESEG

* and stores the endpoints x1,y1,z1 and

* x2,y2,z2 in it.

* loc = LmakelocationF (frm, pset);

* creates a location loc from the points in
* pset with respect to coordinate frame frm.
. loc = LmakelocationFF (frmfam, pset);

* creates a location loc from the points in
* pset with respect to coordinate frame

* family frmfam.

* Lfreelocation (loc); de-allocates location loc.

* loc2 = Lconvertloc (locl, btype, frm, frmfam);

* creates a location loc2 by converting

* locl to frame frm or frame family

* frmfam. NULL is returned

* if the location cannot be converted.

* btype = Lcheckbase (loc);

* returns the base type for location loc

* frm = Lgetbasef (loc); returns the base frame for location loc
* frmfam = LgetbaseFF (loc);

* returns the base frame family for

o location loc

* id = Lgetbaseid (loc);:

* gets the ID number for global base frame
* , or family of location loc.

* pset = Lgetpointset (loc); ' ‘

* gets the point set for Tocation Toc.

*

t***t#t#tttt*#tt###ttttt*t**ttt#t*#*tt**##*tt*#**tt*#*!#t‘##/

LOCATION *LmakelocationF (), *LmakelocationFF (), *Lconvertloc ();
LPOINTSET *Lnewpointset (), *Lpoint (), *Llineseg (), *Lgetpointset ();
LPOINTSETTYPE Lpointsettype ();

BASETYPE Lcheckbase ();

FRAME *LgetbaseF ();

FRAMEFAMILY *LgetbaseFF ();

/t###*###‘#'*#‘tttt**#*t####‘t*t**t#t*t*#*t##*‘*#***‘*t#t##..

computes distance between locl and loc2
Ldistance3 (locl, loc2);
computes 3D distance between point

dist

*

* Routines for comparing locations and calculating
* secondary features:

[] .

i LOCATION *1, *locl, *loc2, *cent, *chull, *box, *axis;
* float dist, area, diam, orien;

* int test;

]

o dist = Ldistance (locl, loc2);

[]

L

*

76

* locl and loc2

* cent = Lcentroid (locl);

* computes centroid of locl

* area = Larea (locl); computes area of locl

* diam = Ldiameter (locl);

* . computes diameter of Tocl

* orien = Lorientation (locl);

* computes the orientation of locl
* chull = Lchull (locl); computes the convex hull of Tloct
* box = Lbox (locl); computes the minimum bounding rectangle
* of loct

* axis = Laxis (locl); computes the axis of locl

* test = Loverlap (locl, loc2);

. tests whether locl overlaps loc2
-

*

*****#*#*****t***#*******t###*t*t**#*t#***t***t*#*****#***#/

LOCATION *Lcentroid (), *Lchull (), *Lbox (), *Laxis ();
float Ldistance (), Ldistance3d (), Larea (), Ldiameter (), Lorientation ();

/****tt******##*#**#t**t***t##*t#****#**t##tt‘##**t#*##'#*tt*
x .
* User-defined types (UDT)
3 .
t###**************tt******#*t**t**#**#*******t*##*#*#*tt**t#/

struct UDTHEADER { _
int Usize; /* size of the UDT in bytes */
char *Udata; /* user-defined data */

3}
typedef struct UDTHEADER UDT;

/**t#*t*##t**t*t##t**#*#***t*t*t*#*#‘*##*t‘##*t*******t*##t'.

*

* UDT routines:

x®

* UDT *u;

* char *data;

* int dsize;

*®

* u = Unewudt (); allocates a new UDT u

* Uassignudt (u, data, dsize);

* loads UDT u with data of size
. dsize pointed to by data

* Ufreeudt (u); de-aliocates the UDT u

*
*tt#*t‘*#*tt#tt**t#tt##t#*t**ttt#**#*t*t##*tt**###**#*##lt‘*/

UDT *Unewudt ();

[JEEERER R AL RRREEERAEEER KRR R EIREERRERAREIRERRERRR AR KRR RR KRR RN RS
*

A Array data type

3

77

##**************‘*****#*4**tt*******************#*******#***/

typedef enum {
AINTEGER,
AFLOAT,
ABOOLEAN,
ASTRING,
ALOCATION,
AENUMERATED,
AUDT,
AARRAY

} ARRAYTYPE;

struct ARRBLKHEADER {
int Asize; /* size of block in elements */
struct ARRBLKHEADER *Anextblk; /* next array block */
union { /* pointer to a block of data of each type */

int _ *Aiblk;
float *Afblk;
int *Abblk;

char **Asbhlk;

LOCATION **Alblk;

int *Aeblk;

upT **Aublk;

struct ARRAYHEADER **Aablk;
} Aelem;

};:
typedef struct ARRBLKHEADER ARRAYBLOCK;

struct ARRAYHEADER {

ARRAYTYPE Atype; /* type of elements in array */
int Atotalsize; /* total number of elements in array */
ARRAYBLOCK *Afirstblk, /*first block in array */

Alastblk; / last block in array */
}s

typedef struct ARRAYHEADER ARRAY;

/##***‘#*t*#*t#*t*#**##****#‘t‘*#ttt#***t#t*“*.‘t***#####.‘.

char *sval;

int eval, ival, bval, size, index, test, increase;

float fval;

LOCATION *1val;

UDT *uval;

ARRAY *aval, *array, *arrayl, *array2, *union, *intersection;

Routines for handling arrays:

Anewarray (type, size); creates a new array with the given
type and size
Afreearray (array); deallocates an array
Airead (array, index); reads integer element of array with given
- index .

* % 2 0 2 @ 0 B R B 2 R B 0

B B P B R R SRR R R R PR R KRN RN R R DR RN R R E R R B R R R R RR RN RN R R KRR RN R R

Afread (array, index); reads float element of array with given
index -

Abread (array, index); reads boolean element of array with given
index

Asread (array, index); reads string element of array with given

' index

Aeread (array, index); reads enumerated element of array with given
index

Auread (array, index); reads UDT element of array with given
index

Alread (array, index); reads location element of array with given
index

Aaread (array, index); reads array element of array with given
index

Ajwrite (array, index, ival);
writes integer element ival into array
with given index

Afwrite (array, index, fval);

» writes float element fval into array

with given index ‘

Abwrite (array, index, bval);
writes boolean element bval into array
with given index :

Aswrite (array, index, sval);
writes string element sval into array
with given index

Aewrite (array, index, eval);
writes enumerated element eval into array
with given index

Auwrite (array, index, uval);
writes UDT element uval into array
with given index

Alwrite (array, index, 1lval);
writes location element lval into array
with given index

Aawrite (array, index, aval);
writes array element aval into array
with given index

Asizeof (array); returns the size of the array

Atypeof (array); returns the type of the array

Aextend (array, increase);
increases array by increase elements

Aiappend (array, ival); appends ival to array

Afappend (array, fval); appends fval to array

Abappend (array, bval); appends bval to array

Asappend (array, sval); appends sval to array

Aeappend (array, eval); appends eval to array

Auappend (array, uval); appends uval to array

Alappend (array, lval); appends lval to array

Aaappend (array, aval): appends aval to array

Aimember (array, ival); determines if ival is a member of array

Afmember (array, fval); determines if fval is a member of array

Abmember (array, bval); determines if bval is a member of array

Asmember (array, sval); determines if sval is a member of array

Aemember (array, eval); determines if eval is a member of array

78

79

* Aumember (array, uval); determines if uval is a member of array

* Almember (array, lval); determines if lval is a member of array

* Aamember (array, aval); determines if aval is a member of array

* Aintersection (arrayl, array2);

. returns intersection of arrayl and array?
* Aunion (arrayl, array?); ‘

* returns union of arrayl and array2

* Aequal (arrayl, array?);

* determines if arrayl equals array2

* Amax (array); returns index of maximum element of array
. Amin (array); returns index of minimum element of array
* Asort (array); sorts the elements of array in ascending
* order

x

##*##*tt****#tt*#t**t*t#**#*t**t#**#**###****##*****#*##***t/

int Airead (), Abread (), Aeread (), Asizeof (), Amax (), Amin (),
Aimember (), Afmember (), Abmember (), Asmember (), Aemember (),
Aumember (), Almember (), Aamember (), Aequal ();

ARRAY *Anewarray (), *Aaread (), *Aintersection (), *Aunion (), *Asort ();

ARRAYTYPE Atypeof ();

float Afread():

char *Asread ();

LOCATION *Alread ();

UDT *Auread ():

/***###*****t*t*#tt##****##*##*t*****#t#t*#************t*#*tt
. A

* Token data structures

*
t*#t#*#*****##*#ttt#*tt*t#*#****‘*t#t******##********‘*#/

/* Define ID types */

typedef enum {
TOKENTYPEID,
LOCALATTRID,
GLOBALATTRID,
INTERNALATTRID,
UDFID,
ubTID, .
ENUMTYPEID,
SCALARID,
LASTID

} IDTYPE;

struct ids-{
IDTYPE idtype; /* ID type */

int *idclass; /* context for ID */
char *idname; /* string name of ID */
int *jd; /* address of ID */

}:
typedef struct ids IDENTRY;

#define BEGINIDLIST IDENTRY idlist [] = {

80

#define ENDIDLIST {LASTID, 0, "", 0}};:

#define BINDTOKENTYPEID(tokentypename,tokentypeid) \
{TOKENTYPEID, 0, tokentypename, &tokentypeid},
#define BINDLOCALATTRID(tokentypeid,attrtypename,attrtypeid) \
{LOCALATTRID, &tokentypeid, attrtypename, \
&attrtypeid},
#define BINDGLOBALATTRID(attrtypename,attrtypeid) \
{GLOBALATTRID, 0, attrtypename, &attrtypeid},
#define BINDINTERNALATTRID(attrtypename,attrtypeid) \
{INTERNALATTRID, 0, attrtypename, &attrtypeid},
#define BINDUDFID(functionname,functionid) \
{UDFID, 0, functionname, &functionid},
#define BINDUDTID(udtname,udtid) \
{UDTID, 0, udtname, &udtid},
#define BINDENUMTYPEID(enumtypename,enumtypeid) \
{ENUMTYPEID, 0, enumtypename, &enumtypeid},
#define BINDSCALARID(enumtypeid,scalarname,scalarid) \
{SCALARID, &enumtypeid, scalarname, &scalarid},

union ATTRIBUTEHEADER {

int Aival;
float Afval;
int Abval;
char *Asval;
int Aeval;
unt *Auval;

LOCATION *Alval;
ARRAY *Aaval;

}s
typedef union ATTRIBUTEHEADER ATTRIBUTE;

typedef ATTRIBUTE TOKEN;

/* Temporary definition of MAXINT and MAXFLOAT (replace these

with real declarations!lll) */
#define MAXINT (1 << (sizeof(int) * 8 - 1)) -1
#define MININT 0 - MAXINT
#define MAXFLOAT 1e37
#define MINFLOAT 0 - MAXFLOAT
/* Define NULL values for each primitive type */
#define NULLINT MAXINT
#define NULLFLOAT MAXFLOAT
#define NULLBOOL MAXINT
#define NULLSTRING NULL
#define NULLENUM MAXINT
#define NULLUDT NULL
#define NULLLOC NULL
#define NULLARR NULL

/* Define other NULL data structures */
#define NULLTOKEN NULL

81

#define NULLPOSE NULL
#define NULLPSET NULL
#define NULLPARAMLIST NULL

/*******#*****l*********#***t*#**********************‘*****#*

Token routines:

char *ttname, *atname, *fname, *uname,
*etname, *vname, *sval;
int ttid, aid, fid, uid, etid, vid, eval, ival, bval;
float fval;
TOKEN *t;
LOCATION *1val;
ARRAY *aval;
UDT *uval;

Macros for recovering id numbers:

BEGINIDLIST begins 1ist of id bindings
BINDTOKENTYPEID(ttname,ttid)

binds token type name ttname to id ttid
BINDLOCALATTRID(ttid,atname,aid)

binds local attribute name atname in token

. type with id ttid to attribute id aid.

BINDGLOBALATTRID(atname,aid)

binds global attribute name atname to

attribute id aid
BINDINTERNALATTRID(atname,aid)

binds internal attribute name atname to

attribute id aid ’
BINDUDFID(fname,fid)

binds function name fname to id fid
BINDUDTID(uname,uid) binds user-defined type name uname

to id uid
BINDENUMTYPEID(etname,etid)

binds enumerated type name etname to

id etid
BINDSCALARID(etid,vname,vid)

binds enumerated scalar name vname in

enumerated type with id etid to id vid
ENDIDLIST ends list of id bindings

Routines for creating and deleting tokens:

t = Tnewtoken (type, ctime);
allocates a new token t of type
type and data collection time
ctime

Tfreetoken (t); de-allocates token t

Routines for reading and writing attribute values:

ival
fval

LK 2R TR R I Y JER 2NN JEE NN JEE 2NN NN JEE B B R K I SR JEE SEE N BEE N IR Y IR SN R I T I IR IR TR TR BEE BT BT I B S B R K R N R 4

Tiread (t, aid); reads integer attribute aid for token t
Tfread (t, aid); reads float attribute aid for token t

82

* bval = Tbhread (t, aid); reads boolean attribute aid for token t

* sval = Tsread (t, aid); reads string attribute aid for token t

* eval = Teread (t, aid); reads enumerated attribute aid for token t
* uval = Turead (t, aid); reads udt attribute aid for token t

* tval = Tlread (t, aid); reads location attribute aid for token t

* aval .= Taread (t, aid); reads array attribute aid for token t

* Tiwrite (t, aid, ival); writes integer ival into attribute aid of
* token t

* Tfwrite (t, aid, fval); writes fload fval into attribute aid of

* token t

* Tbwrite (t, aid, bval); writes boolean bval into attribute aid of

* . token t

* Tswrite (t, aid, sval); writes string sval into attribute aid of

* token t

* Tewrite (t, aid, eval); writes enumerated type eval into attribute
* aid of token t

* Tuwrite (t, aid, uval); writes udt uval into attribute aid of

* token t

* Tlwrite (t, aid, lval); writes location 1val into attribute aid of
* " token t

* Tawrite (t, aid, aval); writes array aval into attribute aid of

* - token t '

*®

*#***#*************#*#lt***###t#****#*****#*t**t**t**#**t*#t/

int Tiread (), Thread (), Teread ():
TOKEN *Tnewtoken ();

float Tfread ();

char *Tsread ();

LOCATION *Tlread ();

ARRAY *Taread ();

UDT *Turead ();

/t*####t*l#tt‘*tt*t#####**t***t##t**#*tt**##t**#t*#*##t##t##t
* .

* Specification List data structures

L]
#t#**tt##*tt**ttt!#'tt###tt**t##t#*#****t#t*tt*tt##**##‘#“t/

typedef enum {
SEMPTY,
SINDIRECT,
SFUNCTION,
SUDF,
SATTRIBUTE,
SARRELEMATTR,
SINTEGER,
SFLOAT,
SBOOLEAN,
SSTRING,
SLOCATION,
SENUMERATED,
suDT,
SARRAY

} SPECNODETYPE;

struct SPECNODEHEADER {
SPECNODETYPE type;
union {
struct SPECNODEHEADER *indirect; /* for indirect node */
struct {
int funcid, /* function id */
num; /* number of parms */
struct SPECNODEHEADER **parameters; /* list of parms*/
} funcnode; :
struct {
int attrid, /* attribute id */
index; /* index if attribute is an array */

} attrnode;

int ival; /* each of the data types */
float fval;

int bval;

char *sval;

LOCATION *1val;

int eval;

upT *uval;

ARRAY *aval;
} nodecontents;

};
typedef struct SPECNODEHEADER SPECNODE;
struct SPECHEADER {

int specid; /* spec id number */

BBLOCKOPT speclock; /* locking option */
SPECNODE *spectree; /* pointer to spec tree */

3}
typedef struct SPECHEADER SPEC;

struct SPECLINKHEADER {
struct SPECLINKHEADER *nextlink; /* next link in list */
SPEC *specnode; /* spec node in list */

}s
typedef struct SPECLINKHEADER SPECLINK;

struct SPECLISTHEADER {

int Sslid; /* speclist id */ :
void (*func) (); /* function to process list */
int Ssize; /* number of specs in list */

SPECLINK *SLfirstspec, /* pointer to the first speclink in Tist */
SLlastspec; / pointer to the last speclink in list */

}s
typedef struct SPECLISTHEADER SPECLIST;

JEEEREE R RRRARREREERE B R E XX SRR AR R A EXRRER KK AR R RN AR R AR ERRERERR SR
L

* Specification routines:

L 2R EE JNE NN BN JEE BN JNF ZEN JEE BN JEE NEE JEE JNE NEE JEE JEE 2N JEE N IR NN BEE IEE BT BEE BN NEE BEE JNE 2NN B 2K I I Y JEE BT BEE JEE JNE IR N BN BRI R 2 B B B 2N N

SPECLIST *s1;

SPEC *sp;

BBLOCKOPT 1q;

SPECNODE *sn, *snl, *sn2;
int n, spid, slid, i, b, e;
float f;

char *s;

UDT *u;

LOCATION *1;

Routines for managing spec lists:

s1 = Snewlist (slid); allocates a new spec Tlist s1 with id slid
Sfreelist (s1); frees spec 1list sl
Saddspec (s1, sp, spid, 1q);

adds spec sp to speclist s1 with

Tockq 1q

Routines for managing specs:

sp = Snewspec (sn); makes a spec out of the spectree
with root specnode sn
Sfreespec (sn); - de-allocates specnode sn

Routines for converting constants into specnodes (leaves):

sn = Siconst (1i); converts integer i to specnode sn

sn = Sfconst (f); converts float f to specnode sn

sn = Sbconst (b); - converts boolean b to specnode sn

sn = Ssconst (s); converts string s to specnode sn

sn = Seconst (e); converts enumerated scalar with id e
- to specnode sn

sn = Slconst (1); converts location 1 to specnode sn

sn = Suconst (u); converts udt u to specnode sn

sn = Saconst (a); converts array a to a specnode sn

Routines for converting attributes into specnodes (leaves):

sn = Sattribute (aid); converts attribute with id aid to
specnode sn
sn = Sarrelemattr (aid, index);

converts array element with index
in attribute with id aid to
specnode sn

Routines for building function specnodes (vertices):

sn = Sand (snl, sn2); returns AND node for two booleans
sn = Sandn (n, snl, sn2, ...);

returns AND node for n booleans
sn = Sor (snl1l, sn2); returns OR node for two booleans
sn = Sorn {(n, snl, sn2, ...);

returns OR node for n booleans
sn = Snot (sn1) returns NOT node for boolean snl

B R B R R R P RER PR PR PR BB KRR DR B R KRR R R RRRE R R AR DR RERRRER PR RERE RN

sn
sn

sn

sn

sn

sn

sn

sh

sn

sn
sn

sn

sn

sn

sn

sn

sn

sn

sn
sn

sn

sn

sn

sn
sn

= Sequal (snl, sn2);
= Snequal (snl, sn2);

a Sless (snl, sn2);
Slesseq (snl, sn2);

85

returns EQUAL node for any types

returns NOTEQUAL node for any types
returns LESSTHAN node for snl less than snZ

returns LESSTHANOREQUALTO node for snl
less than or equal to sn2

Sgreater (snl, sn2);

returns GREATERTHAN node for snl
greater than sn2

= Sgreatereq (snl, sn2);

Sadd (sn1, sn2);
Saddn (n, snl, sn2,

Ssub (snl, sn2);

Smultiplyn (n, snl,

Scentroid (sni);

Sarea (snl);
Sdiameter (snl);

Sorientation (sn1);

= Schull (snl);
= Sbox (snl);

= Saxis (snl1);
= Soverlap (snl, sn2)

Smultiply (snl, sn2);

Ssregexp {(snil, sn2);

returns GREATERTHANOREQUALTO node for sni
less than or equal to sn2

Srange (snl, sn2, sn3);

returns RANGE node for snl between sn2
and sn3 inclusive
returns ‘ADD node for snl + sn2
2)s
returns ADDN node for snl + sn2 + ... + snn
returns SUB node for snl - sn2

returns MULTIPLY node for snl * sn2

sn2, ...);

returns MULTIPLYN node for snl * sn2 *
* snn

Sdivide (snl, sn2);

returns DIVIDE node for snl / sn2

Ssubstring (sn1, sn2);

returns SUBSTRING node for snl a substring
of sn2

returns REGEXP node for snl a regular
expression matching sn2

Sdistance (snl, sn2);

returns DISTANCE node for minimum distance
between snl1 and sn2

Sdistance3 (snl, sn2);

returns DISTANCE3 node for minimum 3D
distance between points snl and sn2
returns CENTROID node for the centroid

or snil

returns AREA node for the area of snl
returns DIAMETER node for the diameter or
largest width of snl

returns ORIENTATION node for orientation of
principal axis of snil

returns CHULL node for the convex hull

of sni

returns BOX node for minimum bounding
rectangie of snl

returns principal axis of snl

returns OVERLAP node for the overlap of

snl and sn2

%ok ok k k% ¥k

SPECLIST
SPEC
SPECNODE

JEEEEERE

* B X BB R RRE R RN RN RE N

Function for invoking UDFs

sn = Sudf (fid, n, snl, sn2, ...);
returns user-defined function node
for n operands

Functions for handling arrays

Smember (sn1, sn2); tests if sn2 is a member of snl
Sintersection (snl, sn2);
returns the intersection of snl and sn2

Sunion (snl, sn2); returns the union of snl and sn2

Saequal (snl, sn2); tests if sn1 and sn2 are equal
(same elements)

Smax (snl); returns maximum element of snl

Smin (sn1); returns minimum element of snl

Functions for bUi]ding and using "slots"

sn = Sindirect (); allocates a slot node sn
Spointer (snl, sn2); points snl to sn2

EEEXERERERREE R R IR R AR KRR ER R RN KRRERARRRRRRRREERRS /

*Snewlist();

*Snewspec ();

*Siconst (), *Sfconst (), *Sbconst (), *Ssconst (), *Sliconst (),
*Suconst (), *Saconst (), *Sudf (), *Sand (), *Sandn (), *Sor (),
*Snot (), *Sequal (), *Snequal (), *Sgreater (), *Srange (),
*Sadd (), *Saddn (), *Ssub (), *Ssubn (), *Smult (), *Smuitn (),
*Sdivide (), *Ssubstring (), *Ssregexp (), *Sdistance (), *Sorn (),
*Scentroid (), *Sarea (), *Sdiameter (), *Sorientation (),
*Schultl (), *Sbox (), *Saxis (), *Soverlap (), *Sattribute (),
*Sindirect (), *Sarrelemattr (), *Smember (), *Sintersection (),
*Sunion (), *Saequal (), *Smax (), *Smin (), *Sdistance3 ();

EEXRBEEEEREEERREERERRRR R EEEEEER R LR R RSN R R R AR ESE

BB routines:

SPECLIST *s1;

BBLOCKOPT 1q;

BBWAITOPT wo;

BBSTATUS status;

TOKEN *t;

BOOLEAN b;

LOCATION -1vaill, 1valz;

void (*func) ();

int id, n, t1, t2, spid, slid, *ptrspid, *ptrslid;

Routine for initialization:

BBinit (); establishes communication and loads ids

87

Routine for sending standing spec lists:

BBsendstandinglist (s1, func);
sends standing spec 1ist s}
and function func to the BB

Routine for sending one-shot spec lists:

BBsendoneshotlist (s1, wo);
sends one-shot spec list s1 to the BB;
if wo is BBNOWAIT, the call returns whether
an existing token is matched or not; if
wo is BBWAIT, the call blocks until a token
is deposited that matches the speclist.

Routine for deleting spec lists:

BBcancelspeclist (slid);
cancels spec list with 1d slid

Routines for getting and putting tokens:

x

L]

*

[}

*

»

*

L]

*

*

3

*

]

*

*

[

»*

*

*®

*

*®

®

* t = BBgettoken (ptrslid, ptrspid);

* returns a pointer to the next token
* available from the BB; returns NULL
* if no tokens are available. The speclist
* and spec ids which matched the token
. are pointed to by ptrsiid and ptrspid.
* BBputtoken (t); ~ sends token pointed to by t to the BB
* .

* Routines for accessing tokens by id number:

[
*
%
L
*
*
*
s
[]
*
L
»
*
*

]
*
®
-
*

[]

[]
*
[
*

t

BBgetidtoken (id, 1q, status);
returns a pointer to the token with
id number id; the token 1is locked if
1g is BBLOCK.

BBreplacetoken (t); sends token t to the blackboard, replacing
the token with the same id number. BBGONE
is returned if the id fails to match an
existing token; BBPROTECTED is returned
if another module has the token locked;
otherwise, BBSUCCESS is returned. Replaced
tokens are unlocked

BBunlocktoken (id); unlocks token in BB with id number id;
BBGONE is returned if id fails to match
an existing token; BBPROTECTED is returned
if another module has the token locked;
otherwise, BBSUCCESS is returned

BBdeletetoken (id); deletes token in BB with id number id;
BBGONE 1is returned if id fails to match
an existing token; BBPROTECTED is returned
if another module has the token locked;
otherwise, BBSUCCESS is returned

o
1}

o
[}

o
n

t#**l##t#tt#"t#*‘#t‘t*t#*‘*##l#*##t!*#t**#t*t‘.#*‘####t“./

int BBpoll (), BBputtoken (); _
BBRESULT BBreplacetoken (), BBdeletetoken (), BBunlocktoken ();
TOKEN *BBgettoken (), *BBgetidtoken ();

89

II. Grammar for Token Template File

The syntax of the template.init file is given by the following grammar.

! Template file

<template-file> := <enum-type-dec> <template-file> |
<user-type-dec> <template-file> |
<array-type-dec> <template-file> |
<globatl-attribute-dec> <template-file> |
<token-type-dec> <tempiate-file> |
<include-statement> <template-file> | e

! Token type declarations

<token-type-dec> := TOKEN <token-type-name> { <attribute-dec-list> } ;

<token-type-name> := <identifier>
<attribute-dec-list> := <attribute-dec> <attribute-dec-list> | e
<attribute-dec> := <attribute-name> : <attribute-type> ;

<identifier>
GLOBAL | <data-type>

<attribute-name>
<attribute-type>

! Global attribute declarations

<global-attribute-dec> := GLOBAL <global-attribute-name>
<global-attribute-type> ;

<global-attribute-type> := <data-type>

! User defined type declarations

<user-type-dec> := UDT <user-type-name> ;
<user-type-name> := <identifier>

! Enumerated type declarations

<enum-type-dec> := ENUM <enum-type-name> = { <enum-value> <enum-list>
<enum-Tist> := , <enum-value> <enum-list> | } ;

<enum-type-name> := <identifier>

<enum-value> := <identifier>

! Array type declarations

<array-type-dec> := ARRAY'<array-type-name> [<number>] OF <data-type> ;
<array-type-name> := <identifier>

! Data type declaration

<data-type> := INT | FLOAT | BOOL | STRING | LOCATION |
<user-type-name> | <enum-type-name> |
<array-type-name>

! Include statements

<include-statement> := INCLUDE <file-name> ;

90

<file-name> := <string>

A number is a sequence of up to 16 digits (0-9). An identifier is a sequence of up to 64 upper or
lower case letters, exclamation point 'V, number sign '#’, minus sign ’-’, or underscore '-'.
Identifiers must not begin with a digit. Letters in identifiers are case-folded when parsed. A string is a
sequence of up to 128 ascii characters delimited by quotation marks '"’. Extra whitespace characters
including spaces, tabs, carriage returns, and linefeeds are ignored by the parser. Comments are

permitted and must be delimited by '/*’ and ’*/’.

a1

l1l. Include File for User-defined Functions

/*****t*#******#*#****t**‘**********t#*****#t#***t*#*****#*#t
»

* File: functions.h

*
t*tt*‘ttt**t****tt*#*#t#***t**t****#*************#*#*1/

#ifndef SPECNODE
#include <module.h> /* for the SPECNODE type def */
#endif :

/##*t**ltt#t#**#t##t**t*t‘t************t*********t**‘#*#*#*#Q
t 3

* Macro for building function name 1list

[]
t**!*t*t#**####‘#*#******#‘*#**#*t***##*t#***t***8#*‘***##*‘/

struct BBtableentry {
char *BBfuncname;
void (*BBfunc) ();
int BBnumargs;

}:
typedef BBtableentry BBtable;

#define BEGINFUNCLIST BBtable BBfunclist [] =

#define ENDFUNCLIST {"", 0, 0}};

#define FUNCTION(functionname,function,numberofargs) \
{functionname, function, numberofargs},

/t#****#t*t*t*##t!#*####*###tt#t*t*t‘t‘#*#‘*#t**###‘**‘t##‘*#

L 4

* BEGINFUNCLIST begins a 1ist of function names and

* the number of their arguments

* FUNCTION(functionname,function,numberofargs)

* stores the function name ’'functionname’

» with the function’'s address ’'function' and
* the ’numberofargs’ number of arguments

» . in the function list

* ENDFUNCLIST ends the Tlist

»

* Function declaration:

L 2

* SPECNODE *userdeffunc (numofargs, arguments)

* int numoargs; /* number of arguments in Tist */

* SPECNODE **arguments /* pointer to a 1list of argument pointers */
* { /* body of function */ }

L J

t#t#t#t**ttttttt‘##t#*tt‘tt*ttt##*t#*tt*#*#*#****t#tt#t##ttt/

92

IV. A Complete Example of a KS

The following example is a KS for detecting obstacles. The KS uses a standing spec for matching
"sonar blobs" large enough to be obstacles (over 20cm tall). For each large blob, an obstacle token
is created and inserted into the blackboard. The C code for the KS along with the template.init file are

given.

GLOBAL HEIGHT : FLOAT;
GLOBAL CONFIDENCE : FLOAT;

TOKEN SONARBLOB {
HEIGHT : GLOBAL;
CONFIDENCE: GLOBAL;

3}

TYPE OBSTACLE {
HEIGHT : GLOBAL;
CONFIDENCE : GLOBAL;
SONAR-EVIDENCE : INT;
VISION-EVIDENCE : INT;

RED : INT;
GREEN : INT;
BLUE : INT;

/#t*ttt**#tttttt#‘

»

* KS for detecting obstacles
. .
t#tt*ttttt#ttttt‘/

#include <module.h>

#define SPECLISTID 1
#define SPECID 1

int ttypeid, tlocationid, sonarblobtypeid, tctimeid,
ttidid, heightid, sonarblobid, confidenceid,
obstacleid, sonarevidenceid, slid, spid;

BEGINIDLIST

BINDATTRID(INTERNALATTR, "ttype", ttypeid)
BINDSCALARID(TTYPE,"sonarblob",sonarblobtypeid)
BINDATTRID(INTERNALATTR,"tlocation",tlocationid)
BINDATTRID(INTERNALATTR,"tctime",tctimeid)
BINDATTRID(INTERNALATTR,"ttid", ttidid)
BINDATTRID(GLOBALATTR,"height" heightid)
BINDATTRID(GLOBALATTR, "confidence",confidenceid)
BINDTOKENTYPEID("sonarblob",sonarblobid)
BINDTOKENTYPEID("obstacle",obstacleid)

a3

BINDATTRID(obstacleid, "sonar-evidence",sonarevidenceid)
ENDIDLIST -

main () {

SPECLIST *s1;
SPEC *sp;
TOKEN *t, *tnew;

BBinit ();
sp = Snewspec (Sand (Sequal (Sattribute (ttypeid),
Seconst (sonarblobtypeid)),
Sgreater (Sattribute (heightid),
Sfconst (0.20))));
s1 = Snewlist (SPECLISTID); A
Saddspec (s1, sp, SPECID, BBNOLOCK);
while (TRUE) {
BBsendoneshotlist (s1, WAIT);
while ((t = BBgettoken (&slid, &spid)) != BBEMPTY) {
tnew = Tnewtoken (obstacleid, '
Tiread (t, tctimeid));
Tlwrite (tnew, tlocationid, Tiread (t, tlocationid))
Tfwrite (tnew, heightid, Tfread (t, heightid));
Tfwrite (tnew, confidenceid,
) Tfread (t, confidenceid));
Tiwrite (tnew, sonarevidenceid,
Tiread (t, ttidid));
BBputtoken (tnew);
Tfreetoken (t);
Tfreetoken (tnew);

3}

94

V. Instructions for Using the Blackboard Package

The blackboard package currently resides on the SUN systems in the "/usr/alv/exp/bb" directory.

As of yet, it is not configured to run on VAXEN.

V.1 Compiling Modules

The LMB Interface package resides in "/usr/alv/exp/bb/lib/libimbint.a", and the inclusion file
resides in "/usr/alv/exp/bb/include/module.h". In order to access the LMB interface library, the

module programmer must add the following lines to his/her “.login" file:

setpath LPATH -i998 /usr/alv/exp/bb/1ib
setpath CPATH -i999 /usr/alv/exp/bb/include

Thereafter, the inclusion file can be accessed with:

#include <module.h>

and the programmer’s module can be compiled with:

cc -o module module.¢ -1Imbint -Tm -lcs -limg

The math, cs, and image libraries currently reside in "/usr/lib/libm.a", "/usr/cs/lib/libcs.a", and .

"/usr/alv/lib/libimg.a" respectively. These paths must also be added to LPATH.

V.2 Executing the System

The LMB resides in "/usr/alv/exp/bb/bin/Imb". In order to access this program, the module

programmer must add the following line to his/her ".login" file:
setpath PATH -i999 /usr/alv/exp/bb/bin

Thereafter, the LMB can be executed by typing "Imb" to the shell. In order to boot the blackboard

system, the user must follow following procedure:

1. Choose a machine on which to run the LMB (i.e. IUSA).

2. Login to IUSA and "cd" to a directory containing the "template.init” file.

3. Run the LMB by typing "Imb" to the shell. Enter the number of modules (N) that will
interface to the LMB. The LMB will proceed to compile the "template.init” file and report

any errors. If there are no errors, the LMB will wait until it receives N connections.

4. On any of the SUN systems, login and execbte each module (in any order). The module

95

will prompt the user for the name of the machine on which the LMB is running. Enter the
name (i.e. IUSA). Once all the modules have established a connection with the LMB, the
entire system will begin synchronous execution.

5. In order to shutdown the system, interrupt each module and LMB. Future versions of the
software will provide a more gracefu! shutdown procedure.

